
AD0A81 607 NVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 19/5
CPU,,TER ARCHITECTURE PERFORMANCE PREDICTION FORNAVAL FIRE CON-ETCIUl

pUNCLASSIFIEDNPSB279OOA6NL2EEEEEEEEEEEEE

NPS52-79-006 4

A NAVAL POSTGRADUATE SCHOOL
Monterey, California

~DTIC

. I ELEcTL f
THESI MAR iI i.980UTHESIS _

COMPUTER ARCHITECTURE PERFORMANCE
PREDICTION FOR

NAVAL FIRE CONTROL SYSTEMS

by

Douglas Monroe Stowers

December 1979

Thesis Advisor: Lyle A. Cox

L -Approved for public release; distribution unlimited

'r 80 3 10 13

I' - l

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE Mb"s "ai an~d ________________

REPOR DOCUMENTATION PAGE Guaa RINTUW4

TNPS52-79-J$6

C omputer Architecture Zrformance, .. l ..

Douglase

sonroeitower

eitc orNaval Potgadat Sch o to

Motere, A934

Naval Postgraduate School 1 e ~ 9 "

Monterey, CA 93940U

14. MONITORING AGENCY NAME 6 AONUSASU Wilment Itei Con=tw11hod 001180) IS. SECURITY CLASS. (00 &#a raiers)

UNCLASSIFIED

I". gCkAsiUllvCATION/DOWNGNAOING

1S. OCSTRIGUTIO1W STATEMENT (of NO* Revert)

Approved for public release; distribution unlimited

I7. OSUTRIOUTION STATEMENT (of tite ebeerest ~mom On Week it* IS Elfeet Oss *hpeVW

09. SUPPLEMENTARY NOTES

S. ma 10011110 (CeuImose emo reese side of assesso m eti fy by week nmbeej

Simulation
Petri-Net
Evaluation

SO. IAMSTRACT (Cantmms. an reverse sde Of mrsessiFF and Sdmmeifr bir bll MbENI. The United States Navy lacks the proper and efficient tools to
evaluate/predict the performance of computer systems during the

* early design phases of system development. This thesis applies
state of the art techniques to provide a methodology that can
assist in the evaluation/prediction process for Naval fire control
systems. The computer system evaluated is a part of a modular
addition to existing shipboard gun fire control systems. A contrac
for the Engineering Development -(ED) Phase of the Droeram has

DO I ~ 1473 tDCTioN op I Nov as s 15 SOLITE UNLSSIFID n $2-9-$
(Pae) 5N 10.SI.S0ISECUOITY Ca.ANIPICATION OF TNSS PAGE (111106 D1114 00-ad)

VUNCLASSIFIED
" (ecently been awarded to industry. The computer system
architecture is evaluated utilizing a Petri-Net simulation
which is best suited to the purpose of concurrent computer
system performance prediction. The prediction model,
described herein, accomplishes the evaluation with the
results being utilized to recommend possible performance
improvements in the hardware and software to the U. S.
Navy Program Office.

: 7-4

I.

I

DD Forr. 1473 UNCLASSFIED
S/ N,. 10,. 14-6 1 2 $Um v c&agweIaIoN Op p,,,eaWo be . #,.o..

Approved for public release; distribution unlimited.

COMPUTER ARCHITECTURE PERFORMANCE
PREDICTION FOR

NAVAL FIRE CONTROL SYSTEMS

by

Douglas Monroe Stowers
GS 13, Naval Sea Systems Command

D.E.E.,M.E., University of Louisville, 1968
M.S.S.M., University of Southern California, 1974

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1979

Approved by:

esis Advisor

Second Reader

C~tir , De artm n-t of Computer Science

Dean of Informatio and Policy Sciences

/'1 _ 3

.w.,.

ABSTRACT

The United States Navy lacks the proper and efficient

tools to evaluate/predict the performance of computer

systems during the early design phases of system

development. This thesis applies state of the art techniques

to provide a methodology that can assist in the

evaluation/prediction process for Naval fire control

systems. The computer system evaluated is a part of a

modular addition to existing shipboard gun fire control

systems. A contract for the Engineering Development (3D)

phase of the program has recently been awarded to industry.

The computer system architecture is evaluated utilizing a

Petri-get simulation which is best suited to the purpose of

concurrent computer system performance prediction. The

prediction model, described herein, accomplishes the

evaluation with the results being utilized to recommend

possible performance improvements in the hardware and

software to the U.S.Navy Program Office.

.

4

l- 7 1

TS

TABLE OF CONTENTS

I. INTRODUCTION 8

B~~. APPROACE*......

II. THE COMPUTER SYSTEM ARCHITECT 11

A. INTRODUCTION1

B. COMPUTER SYSTEM ORGANIZATIONAL LEVELS 11

1. Levels of Hardware Design 13

C. COMPUTER HARDWARE DESCRIPTION LANGUAGES 16

1. Design Automation 16

2. Digital Hardware Languages Under Development.18

a. Conlan 19

b. Ddltrn 20

D. INTEGRATED CIRCUIT DESIGN 22

1. The Problem and the Proposed solution........23

2. Can the Architect Exploit This Advance? 24

E. SUMMARY2

III. COMPUTER PERFORMANCE EVALUATION 27

A. INTRODUCTION o....... o.......... o. .o. .. .2

B. PURPOSES OT PERFORMANCE EVALUATION 2?

1. Selection Evaluation....... 28

2. Performance Projection 29

3. Performance Monitoring....................... 30

a. At the Chip Level 31

b. At the CP/IO Level 31

c. At the System Level 32

5

Sd. At the Netvork Level 32

~~~C. SUMMARY ......... ... . . . . . . . .. . .. .

IV. S.ZAFIRE (ELECTRO-OPTICAL TIRE CONTROL SUBSTSTIM) ..... 34
R •~~~A INTRODUCTION ............................ 3

B. SEAFIRE DESCRIPTION .............................. 34

1. Subsystem Definition ........................... 34

2. SEAFIRE General Description .................. 37

3. Operational and Organizational Concepts ...... 38

C. REQUEST FOR PROPOSAL ............................. 40

1. Microprocessors/Firmware Requirements ........ 41

D. PROPOSED CONTRACTOR SYSTEM DESIGN ................ 43

1. System Description ........................... 43

2. General Description .......... ... ... . ... * .45

3. AN/UYK-20 Functional Description ............. 47

4. Target Motion Analysis (TMA) ................. 53

E. SUMMARY .......................................... 56

V. USE OF AN EXISTING COMPUTER SYSTEM PERFORMANCE TOOL..57

A. INTRODUCTION ................. #.............. s.. .57

B. DEVELOPMENT OF THE DESIGN EVALUATION SYSTEM ...... 58

C. THE PETRI PERFORMANCE PREDICTIVE PACKAGE (P4).....60

D. LIMITATIONS OF THIS APPROACH ..................... ?1

E . SUMMARY ......................... . . . . . . . .. 4

VI. IMPLEMENTATION/EXPERIMENTAL PROCEDURES ............... 75
° •A INTRODUCTION . . . . . . . ................. ... 75

B. A DESCRIPTION OF THE PROGRAM ..................... 75

C. PRESENTATION OF RESULTS .......................... 80

VII. CONCLUSIONS AND PECOMMENDATIONS ................ .82

6



APPENDIX A -PROGRAM LISTING ......................... 84

LIST OF REFERENCES ................ ........... 3

INITIAL DISTRIBUTION LIST ....................... 105

I.

iJ

t7



-. INTRODUCTION

A. BACKGROUND

The fire control system evaluated, the SEAFIRE program,

is presently in the Engineering Development (ED) phase of

the weapon system development process with system deployment

expected some time during the mid 1980's. A Request For

Proposal (RFP) for the design of the system was released to

industry and was responded to by a number of contractor

teams. I thorough evaluation of these proposals, which

included technical, management, cost and schedule factors,

was performed over a ten month period resulting in contract

award to industry during 1979. The contractor, although

provided an hN/UYK-20 computer as a baseline processor, was

not prohibited from using additional imbedded processors to

support/enhance his design. The kN/UYK-20, being a standard

Navy computer, was required for use in the SEAFIRE system at

this time. The Program Office, however, has plans to replace

the AN/UYK-20 with a modern computer prior to the SEAFIRE

fleet introduction. These plans though will only be

implemented if the AN/UTK-20 is replaced as one of the Navy

standard computers and if the Naval Material Command allows

it to occur.

The computer architecture, as designed by the

contractor, represents an untested real time combat

subsystem. This thesis attempts to evaluate the SEAFIRE

8



£T

computer architecture and provide a meaningful input to the

U. S. Navy SEA!IRE program office (Naval Sea Systems

Command) as to its predicted performance.

B. APPPOACH

The first step to accomplishing this goal was to become

familiar with the present design status of the computer

architecture and to develop liason with its designer. The

present level of the design drove the evaluation to a

modular configuration, as would be expected at this point in

the design process. A determination was then made to

establish the performance measures on which to measure or

estimate the performance of the system.

The next step was to research a number of available

methodologies for computer architecture performance

prediction and to select the one methodology determined best

suited for this project. The model selected was designed by

L.A. Cox, based on work led by J. Dennis at M.I.T. and other

researchers. This model was developed to execute on a non

standard CDC-7600 computer system and thus required

considerable effort in program modification to enable it to

run on the PDP-11/50 minicomputer at NPS.

I* The remaining work consisted of developing program

representations of the SEAFIRS software and hardware for use

' in the simulator, and finally in the analysis of the

results. A number of assumptions, which were required due to

9

r ..



a lack of information, are denoted throughout this. thesis. A

listing of the final version of the Petri-Net simulator is

contained in Appendix A.

I.

I

I'



II. THE COMPUTER SYSTEM ARCHITECT

A. INTRODUCTION

How does the computer system architect cope with the

rapid pace of computer technology? His capability to

describe the hardware at specified levels in an efficient,

interactive manner that provides a dynamic atmosphere during

the life of computer design may be the key. This chapter

deals with a spectrum of design techniques that assist the

architect.

B. COMPUTER SYSTEM ORGANIZATIONAL LEVELS

According to Doty and Liposki (11) Von Neumann's 1946

paper, "Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument" is fundamentally one of the

most significant papers in computer architecture written;

principally because It was written 15 years before the term

was coined (Von 4eumann claimed no ideas but was merely a

focal point for them). This paper outlined the four

principle units reouired of a general computing system; the

control unit, the data operator, the memory, and the input/

output unit. These units form the conceptual basis of almost

all current computers.

What Is computer architecture? By "computer

architecture" we mean the abstract, functional description

11

k II _ _ _ _



of a computer as seen by a machine-level programmer, that

is, everything the programmer needs to know to write

programs that run effectively on the computer (i.e., the

conceptual structure and functional behavior, as distinct

from the organization of the data flow and controls, the

logical design, and the physical implementation). As a

result of the changing technologies of processors and

memories, deficiencies in earlier designs, as well as

innovations in networks and distributed processing, computer

architecture is evolving rapidly.

In addition to technology, there are several other key

factors that contribute to architectural innovation; most

significant are increasingly inexpensive hardware and the

rising cost of software (human labor). All future systems

should be designed with consideration of these and other

factors.

A good system can be defined as a well-organized

collection of components chosen to meet the system goal. A

modular system is a collection of these component modules.

The systems are the largest design units, and subsystems are

convenient intermediate-level complexes (18).

One systeir's components may be another's systems, in

different situations. Therefore, a complex system design

should be described at a number of different levels which

Tay change dynamically as the design proceeds from concept

to implementation.

iI
12

I'•



1. L-evels of Hardware Design

Bell and Newell (2) define the levels in the

hierarchy of digital computer structures largely on the

basis of considering the different activities of different

technical practitioners. The 'institutional positions" of

logic designers and circuit designers are used as evidence

for the existence of distinct levels. Their highest level

(the PMS-Processor Memory System level) has computers as

structures and processors, memories (storage) etc., as

components. The next, or programming level, sees programs as

made of component instructions, operators, etc. The three

logic design levels are the:

1) Register Transfer Level - arithmetic units made from

registers, controls, data operators;

2) Sequential Switching Circuit Level - counters made

from flipflops, latches;

3) Combinatorial Switching Circuit Level - encoders,

selectors, Iterative nets made from logic gates.

The lowest level they consider is the circuit level

where example systems (circuits) are amplifiers, clocks and

gates and where the components include relays, transistors,

resistors, diodes and delays. The essential constraints for

the notations to satisfy are ones of completeness,

flexibility and brevity ( high informational density) (3).

An appropriate criterion might be to identify a level of

design with a design description (specification) then:

13

I'!" i ' l l. .. .I i ... .i ... .. ... .. .. . .... ... .. ....



A system level . . . is characterized by a distinct
specification for representing the system (that is, the
components modes of combination and laws of behavior). These
distinct languages reflect special properties of the types
of components and of the way they combine . . . The fact
that the languages are highly distinct makes it possible to
be confident about the existence of different levels (2)

This method of identifying the various levels of system

design allows one to identify the most recently emerged

levels, but it leads to a significant difficulty. Whenever

it is difficult to decide whether two languages are highly

distinct, it is also difficult to decide whether they define

different levels. Thus it seems as though there are no

effective procedures, even in principle, for counting the

number of distinct levels of system design. The number of

levels, and thus the extent or depth of the levels, are

difficult to precisely determine.

This view introduces a new notion: the span (depth) of a

level is commensurate with the short term comprehension of a

human being. That is, one historical reason for designing a

large system in successive stages has been that the human

designer has a certain limit to the range of detailed

consideration which he can instantaneously handle

effectively (although Cray/Amhdahl developed computers

individually). If the design process is to be automated, it

might be initially done in smaller steps than humans

I. currently handle (for the machines are notoriously inept at

handling the intuitive associations which a designer

employs). The number and span of the design steps has always

been difficult to precisely determine and we should expect

14



them to continue to change in the future (18). It is

important to remember that all our experience to date shows

that design automation cannot rely too much on artificial

methods; the human has to stay involved.

The design specification is the key to the definition of

a level. The language defines the level; is the tool for

designing at that level; expresses the components and

systems of the level; and provides the documentation for

design at that level. The lowest-level, irreducible units of

a design are the primitives (words) of the language; the

system structures designed at that level are the sentences

of the language. Preparing a design at a given level means

writing a statement in the language of the level. The

process of designing an entire system becomes a process of

carefully translating statements in one higher-level

language to successively lower levels.

I1

15

I' .- . . .. ...-



C. COMPUTER HARDVARE DESCRIPTION LANGUAGES

Computer hardware description languages (CHDL's) can be

defined as languages for describing, documenting,

simulating, and synthesizing digital systems with the aid of

a computer (23). A CEDL can be used to describe the logic

gates, the sequential machines, and the functional modules,

along with their interconnection and their control, in a

variation of a programming language tuned to the overall

needs of describing hardware.

1. -2esign Automation

Just as software designers use high-level languages to

express algorithms in terms of language statements, so

digital hardware designers are beginning to use hardware

description languages to describe the digital systems they

want to design (24).

The task of designing a digital hardware system can be

considered as consisting of the following steps:

1) The generation of a system diagram from the

specifications of the system to be designed.

2) The production of detailed logic diagrams for each

subsystem.

3) The partitioning of the logic diagram into general

units.

16



4) The assignment of integrated circuit chips for

implementing each unit.

5) The placing of chips on logic cards and of cards on

boards, and

6) The interconnecting of the chips.

7) The testing of the integrated circuit boards.

Computers have been widely used for aiding steps 4 to 7.

A total design automation system requires that steps 1.to 6

be automated. CHDL's can be used for aiding system and logic

design as well as partitioning a digital system. A designer

can use a CHDL to express his design and leave the exacting,

tedious, uninteresting details to a computer (23).

The process of automated logic design may consist of

the following steps:

1) A designer expresses his design in a CHDL by writing

a program.

2) A hardware compiler (translator) checks the syntax,

consistency, etc. of the language statements and reports the

errors to the designer for correction. After the errors are

corrected, the translator produces a data base to be used by

the system simulator and the logic synthesizer.

3) The system simulator models the design at the system

level. This will save the large amount of computing time

used for simulating everything at the detailed Rate level.

If the system performance is unsatisfactory, the design

language statements are modified. If the performance is

satisfactory, the next step Is taken.

'. :,17



4) The logic synthesizer (a program) uses the data base

produced by the translator, accepts the types and

constraints of logic components, and produces a logic

diagram.

Since a CHDL constitutes the input to the design

automation process, it plays an important role in the task

of achieving automated logic and system design.

2. Digital Hardware Languages Under Development

A number of digital hardware languages exist today and

are in use by industry as well government sources. One of

the most recent uses in the military was for the selection

of the Computer Family Architecture (CFA) (1,20). This was a

joint DOD effort aimed at providing defense systems

developers with a software compatible family of military

computers at varied levels of performance that have

extensive systems/support hardware. One facet of the

selection process was that the measurements and tests of

hardware candidates were made, not on the various computers

as physical objects, but on their formal descriptions

expressed in ISL (Instruction Set Processor Language) (2).

This was the first time that the architectures of

commercially viable computers were described in a formal

language, the description compiled, and then used to drive a

simulator, executinR benchmarks and diagnostic machine

language programs. A valid sign for future users is that it

18



was generally accepted by industry, military and government.

What other methods have been developed since the above?

The remainder of this section covers several of the efforts

presently being developed as a result of the Working Group

of the Conference on Computer Hardware Description

Languages.

a. Consensus language (CONLAN)

CONLAN is a consensus hardware description language

capable of representing hardware at several distinct levels

of detail (15). The range of language levels suggests a

family of languages that share a common basic syntax and are

rooted in a common semantic base.

Guidelines laid down for the language follow:

A. CONLAN must support design, description,

and simulation of at least the following classes of systems:

gate networks, register networks, processors, memories,

processcr systems. Each class has been fully defined.

B. Any system may be displayed via either (a) a

network structure description or (b) a behavior description.

C. CONLAN is to service:

1. Computer architects and logic designers

for purposes of trade-off exploration and

optimization, design verification, and

design documentation.

2. Systems, micro, and applications program-

19

LL I *"•- .. .. ..- , . .-.. .... .. . I



mers.

3. Electronics production engineers.

4. Maintenance engineers.

D. CONLAN syntax and semantics must support:

1. Well-defined descriptions

2. Machine parsing, interpretation and

simulation with error detection (strong

typing has been adopted)

3. Comprehension of complex system structure

and function

4. Division of design efforts

5. Control over the level of abstraction at

which subsystems are described.

6. Simulation control

E. CONLAN will be evaluated in terms of

benchmarks such as: standard function declarations, time

operator declarations, integrated circuit descriptions (long

list, including microprocessors), design descriptions

(another long list including a multiprocessor system).

The details of CONLAN (i.e. BN7 grammer, etc.) are

contained in (15). Since CONLAl is still under development,

additional information is available only from the working

committee which is developing the language.
I.

b. Digital Design Language Translator (DDLTRN)

Today, the greater complexity of systems, the desire for

20

.. ... .-1



short design cycles and error-free designs, and the use of

array logic all suggest the need for machine assistance in

the logic design activity (8). DDL is a block oriented,

statement register transfer language for the description of

digital hardware. DDLTRN is a program that translates a DDL

description of a digital system to Boolean equations and

register transfer statements suitable for driving a

companion simulator program DDLSIM (6,g). rDLTR4 is written

in the IFTRAN (a structured FORTRAN) language (16).

Translation consists of replacing the syntax of more

abstract language constructs with more explicit syntax,

yeilding Boolean equations and IF-THEN conditioned register

transfer statements.

As mentioned earlier, DDLSIM is a program for simulating

digital systems lescribed using DDL (7). DDLSIM does very

extensive error checking of described systems, simulation

control cards, (same system with different data sets and/or

parameters), and the simulation process itself. DDLSIM

permits multiple simulation runs within one Job in order to

either verify the system design or study its behaviors under

different conditions.

DDLTRN/SIM and CONLAN are two examples of the growing

lnumber of design/automation aids available today. These

I. CDLs put the the architecture community in the position to

explore and develop needed design automation tools. Since

Dietmeyer is a member of the above committee, it would be

expected that many of his ideas will be incorporated into,

21



or provide the basic proundwork for future efforts.

D. INTEGRATED CIRCUIT (IC) DESIGN

Ev zince integrated circuit designers began to put

thousands of transistors onto a single chip, the cost, in

terms of human labor, required to lay out the circuit has

been extremely high. Although hardware has reached a point

of being considerably cheaper than software, the Department

of Defense (DOD) requirements for special purpose, limited

market chips has seen its time. The need for good design

automation in the area of integrated circuit layout is

severe. What is needed, and what is evolving, are design

techniques which free the designer from the tedious aspects

of IC design ant allow him to concentrate on the more

creative and necessarily human side of the design process.

Using traditional methods, large scale integrated

circuit lay out is a tedious, time consuming and error-prone

process. For commercial use, where literally millions of

identical chips are sold each year, the cost to do this has

not been a problem. But for the DOD it is becoming an

increasingly significant problem; especially since the DOD

market for ICs comprises only about 7% of the total IC

I. market and because environmental and other constraints are

becoming more severe (16). The overall goal of an IC design

- is to pack as much circuity as possible into the smallest

possible amount of "chip real-estate"(IC density),

S'12
22



therefore, higher production yields may be obtained.

1. The Problem and the Proposed Solution

At present, when a company designs large scale

systems, there are often delays of months or even years in

the development of a prototype IC and the price for a single

chip ranges from one quarter to half a million dollars, the

DOD is forced to revert to using older technology. This,

coupled with the typical eight to fourteen year system

development cycle of large computer systems (examples

include AEGIS, TACFIRE and CDC STAR 100), has created quite

a military dilema. Adl to these problems the stringent

requirements for MIL-SPEC qualification, fault-tolerance,

built-in test, high clock rates, and the use of advanced

lesign concepts for affordability, causes the required chips

not be ready for several years and when available are

extremely high in cost to the user.

A new DOD (Tri-Service) program known as Very HiRh Speed

Integrated Circuits (VHSICs) began at the start of 71 79 and

is a six year effort initially budgeted for in excess of

W2e million dollars. Program goals require a processing

throughput capability for computers of between 100 to 1000

times greater than presently exists.

The overall purpose of the DOD program is to:

Advance introduction of VHSIC into military systems

by at least five years ahead of present projections

23



* Focus industry attention on DOD requirements through

the establishment of distinct goals and funding infusion

* Make the latest state-of-the-art devices available

for military use in advance of commercial exploitation,

thereby reversing the present two to five year lag between

commercial development and military availability

* Advance IC technology beyond the limits of optical

litho- graphy to submicron dimensions

. Replace over fifty or more present ICs with one IC,

thereby providing at least a ten-fold reduction in the size,

weight, power consumption and failure rate with accompanying

savings in both initial and life cycle costs of present

military computer processing systems.

* Provide ICs with 100 times the processing throughput

capability of present ICs (16).

By meeting the above stated goals, the DOD expects to

achieve affordable chips, reduce potential supply and

logistics problems and maximize system reliability. The

improved architectural and design concepts should result in

a limited chip set with broad applicability to military

systems.

2. Can the Cor'puter Architect Exploit this Advance?

I.
Despite these advances that semiconductor technology

has created, the question arises as to whether the computer

architect can exploit these with proven lesign methods of

24

r . .



his own. A number of approaches have been actively pursued

over the last few years (see previous section). However,

there are not currently the languages, operating systems and

design methods needed to effectively employ the new LSI

devices which can now be produced. We would like to be

limited only by economic factors, not technical or

theoretical factors. A hope is that a new dimension for the

architecture of computer systems will emerge from these

design methods so that LSI design methodology can be used

effectively. There is a need to proceed slowly and rather

cautiously and to introduce somewhat more general purpose

description languages selectively.

The military system cannot afford these time delays and

much effort is being pursued to shorten this cycle and to

obtain industry input earlier. A major directive, Office of

Management and Budget Directive OMB A:109 (17), has as a

major goal, industry involvement in system development

earlier in the conceptual development phase. This thrust,

combined with the availability of the tools discussed in

this section on design automation and those to be covered on

architecture evaluation could be implemented as Concept

Development Phase evaluation techniques. The impact would be

to provide state-of-the-art computer designs at lower costs

with the added effect of shortening the entire

development/procurement cycle.

25



E. SUMMARY

This section has provided the basis to understand

computer architecture as viewed by different practitioners

and how methods are being developed to assist in early

design phases. These techniques can assist the DOD in

realizing better structured hardware an! to accomplish the

tasks required.

The next section further defines the methodology phases

of architecture evaluation used to enhance the automated

design techniques covered.

I.

II

' -



- t .MJ,. ~ *,

III. COMPUTER PERFORMANCE EVALUATION

A. INTRODUCTION

Computer performance evaluation attempts to provide a

methodology for examining the adequacy of a com~uter system

as it serves or will serve the needs of its users. In this

context, performance may be interpreted as the technical

equivalent of the notion of value to the user. In other

words, the performance evaluation activities can be regarded

as those technical activities whose purpose is the

assessment of performance (how well the system works) (12).

This chapter discusses different levels of performance

evaluation.

B. PURPOSES OF P7RFORMANCE EVALUATION

In general, there are three major motivations for

performance evaluation: selection evaluation, performance

prediction and performance monitoring. These purposes can be

classified along several dimensions according to their

specific objectives. As with many other system evaluation

techniques, these classifications are only convenient ways

of organizinR a repertoire of knowledge in to a framework

which can be more easily understood. The dividing lines

between categories are somewhat unclear, but are utilized

for lack of a better method.

27



.. Selection Evaluation

One of the most frequent reasons for initiating an

evaluation is to include performance as a "decision

criteria" in computer system or digital electronics system

decisions for a specified operational requirement. The

section on SEAFIRE provides a description of such a system

along with an overview of the original evaluation guidelines

for procurement of the system. It should be recognized that

the computer system was only a subsystem in the context of

the SEAFIRE hardware, which in turn was but a single factor

in the total weapon system procurement (cost, management,

etc. were also weighted as portions of system value). Each

competitive contractor teams proposal may bave contained one

or more superior subsystems, but were judged to have fallen

short in many other areas. For example, one of the losing

contractors may have had a better computer subsystem, but

poorer subsystems in the other areas. Additionally, his

management approach or cost proposal may not have been as

good as the winners'. Therefore, the weapon system design

selected may not necessarily provide the U.S Navy with the

best" computer architecture available, but the overall

I. system approach is probably the soundest and the most cost

effective for the lavy.

In general, selection problems may be classified into

the following categories (12).

28



a. Processing mode selection

b. Vendor selection

c. Installation Selection

d. System Component Selection

e. Application Program Selection

A definition of each category is not provided since the

content is clear.

2. Performance Protection

This evaluation technique may be the least frequently

used. The problem here is to estimate the performance of a

system not yet in existance (in some state of design). Thus,

the evaluation is oriented toward a new system design, both

hardware and software. The evaluation technique pursued In

this research is encompassed within this category. The

performance evaluation of algorithms run on a particular

computer architecture is mostly concerned with performance

prediction and is restricted, in general, to some form of

computer modeling or simulation. In section V a method of

conceptually representing computer systems by use of a

concurrent control system model is explained. This method

forms the basis for the performance prediction system

leveloped by Cox (4) and modified for use here.

29

I'L . i



3. Performance Monitoring

Once a system is operational, monitoring provides

data on the actual performance of the system. The

performance statistics that may be obtained while executing

test programs aid in future equipment procurement decisions

and are employed by the system user for system tuning; in

forecasting the impact of changes in the system (either in

reconfiguring the hardware or in improving executed software

modules). The Imvact of future technology and computer

architecture will greatly affect performance monitoring at

all levels of the computer system. Internal and external

instrumentation will provide data accessible to the

performance evaluator. A distinction should be understood

here between performance monitoring (continuous) and an

evaluation study. Continuous monitoring is usually performed

for a substantial portion of the lifetime of the existing,

running system. Its objective is to keep the system's

performance under observation in order to detect performance

problems as soon as they arise. An evaluation study is

generally much more limited in time and is usually triggered

by the identification of a performance problem or the

suspicion of its presence. The following sections delineate

the evaluation aspects at various hardware levels.

30



a. At the Chip Level

With the trend to large scale circuit integration,

performance evaluation through hardware instrumentation is

becoming less flexible. The number of leads remain constant

or decrease while the number of functions increase with the

consequence of fewer test points per function being

available. Since the cost per gate has reduced by a factor

of 100 over the last ten years, it is now economically

feasible to devote some of the circuitry in these chips to

auxiliary functions such as performance monitoring. This

will provide built-in data analysis without the addition of

any hardware.

b. At the CP-I/O Level

At this level the large - scale integrated circuit

chips will be interconnected in various ways to implement

the hardware instrumentation. Chips such as microprocessors

will be used to do the actual work in this area. As with the

previous level, lack of test points is a major problem;

microprogramming causes an elimination of some probe points.

Also, more test points are lost due to the trend towards

eliminating peripheral channels. Costs can be reluced by

integrating device control units into the processor and

transferring information as serial bit streams.

31

r - I II



c. At the System Level

At this level, built-in hardware monitors may

provide additional assistance. The performance statistics

collected by the associated hardware/software can be time

correlated through the use of other microprocessors. The

result is two fold: first to reduce the overhead of whatever

software instrumentation is still required, ani second to

eliminate the need for external monitoring devices. The

important advance at this level is that performance data

will be stored under the system's database management system

which will allow for on-line display of performance

monitoring data. The data is therefore available for on-line

input to various scheduling algorithms used to "fine tune"

the system dynamically. A major draw-back to this method may

be that the evaluation schemes will have difficulty in

dealing with the virtual environment of present and future

systems. An additional way would be the tendency to less

secure systems because of the required critical parameters

associated with the performance evaluation schemes.

d. At the Network Level

Distribute4 processing is the functional

distribution and cooperative processing of user applications

among multiple, separately located computer systems of the

32



r.

same and/or different size and characteristics. The

decreasing cost of hardware coupled with the increasing

performance of distributed systems offers some advantages to

performance evaluation at this level. Performance data can

be collected locally at each site and transmitted to a

central cite for evaluation and will provide a baseline for

network tuning. From a global viewpoint though, more factors

must be taken into account to assure that suboptimization

does not occur.

C. SUMMARY

This chapter has provided a partial outline of

performance evaluation techniques used for computer

evaluation. Other specific techniques such as benchmark,

kernel, analytical model, synthetic programs, etc. are

available but not discussed here. A thorough discussion is

provided in reference 4. These areas are selection

evaluation, performance prediction anI performance

monitoring. The DOD requires a more defined approach to all

these areas but is most lacking in performance prediction

techniques.

The next section describes a predictive method which

I. will be applied in this thesis.

33

1'-



IV. SEAFIPE (_LECTRO-OPTICAL FIRE CONTROL SUBSYSTEM)

A. INTRODUCTION

This section provides an overall description of the

SEAFIRE Program and outlines its intended capabilities.

SEAFIRE is presently in the Engineering Development (ED)

phase of the weapon system development process with system

deployment expected sometime during the mid 1980's. A

Request for Proposal was released to industry and was

responded to by a number of contractor teams. A thorough

evaluation of these proposals, which included technical,

management, cost and schedule factors, was performed over a

ten month period resulting in contract award to industry

during 1979. The computer subsystem section of the RFP Is

more formally described and the computer architecture

response to this section is described at the component

level.

B. SEAFIRE DESCRIPTION

1. Subsystem Definition

jSEAFIRE is an electro-optical fire control subsystem

modular addition to shipboard gun fire control systems

AL (GFCS). This additior will allow control of the guns and

gunfire by the GFCS when ship's sensors can designate

, 12
34

I'i



certain targets to SEAFIRE for which an electro-optical

sensor is effective. SEAFIRE will also allow uninterrupted

operation of GFCSs when the GECS sensors are ineffective

because of performance degradation or are incapacitated by

equipment failure, casualty or tactical limitations. SEAFIRE

shall consist of an optical director (above deck) and

control, test and display units. As a subsystem integrated

with a GFCS, SEAFIRE will perform the following functions

against Surface Major Combatants, shore

vehicles/installations, surface coastal defense craft and

river patrol craft(22):

a. Target Detection-SEPFIRE will provide the

GFCS with day and night, passive electro-optical imaging for

detection, manual and automatic angle trackinR, and active

laser rangefinding. SEAFIRE will be capable of performing

these operations azainst sea, surface and shore-based

targets which can be engaged by the GFCS during electronic

countermeasures (ECM), electro-optical countermeasures

(EOCM) and Emission Control (EMCON) conditions.

b. Target illumination - Once SEAFIRE has

established track of a target, SEATIRE will be capable of

providing laser target illumination for laser-guided

ordinance.

Ic. Other fire control functions - SEPFIRE will

be capable of tracking reference points (landmarks, buoys,

etc.) to provide naviwation data to the GFCS for indirect or

offset firing. SEAFIRE shall be capable of sharing its line

35r - -



of sight (LOS) to the LOS of the GFCS radars for target

identification and check sighting.

d. Ancillary Functions - When not employed as a

target tracking sensor for fire control, the inherent

capabilities of SEAPIRE will provide ancillary functions

including, but not limited to: detection of chemical agent

clouds, and aiding in navigation, station keeping, friendly

oDerations, surveillance, intelligence collection, swimmer

detection and underway replenishment.

In addition, SEAFIRE will be capable of being configured

as a SEAFIRE inlependent GFCS for applications aboard ships

on which no other GFCS exists. As a SEAFIRE independent

GFCS, SEAFIRE should be capable'of performing, in addition

to' a, b, c, and d above, all functions necessary to engage

and direct gunfire against all trackable targets. These

functions will include, but not be limited to: direct

acceptance of tactical information, interface with ship's

stable reference, generation of gun orders and interface

with gun mounts.

I3

36



2. SEA!IRE General Descriptiol

SEAFIRE will be comprised of a director, passive

imaging sensors, laser transmitter and receiver, as well as

support, display, and control devices. SEAFIRE controls and

display will be integrated into the consoles in the MARK 86

and 92 GFCS applications. The controls and display in the

MAPK 68 GFCS application will be configured as a dreier of

the AN/SPG-53 radar console. SEAFIRE will have an

independent console in the SEAFIRE independent GFCS. The

following major component list represents the SEATIRE

baseline(21):

Director

Laser Rangefinder/Illuminator (LR/I)

Thermal Imaging Sensor (TIS)

Television Sensor (TVS)

Computer, Computer Program, and Related Equipment

Maintenance Panel

Interconnecting Cables

Remote Video Displays

Support and Test Equipment

Console

Automtic Video Tracker (AVT)

Interface Module

Video Character Generator

Video Processor

37



Real Time Clock

SEAFIRE is depicted in the functional block diagram of

Figure 1.

3. SEAVIRE Operational and Origanizational Concepts

SEAFIRE will be used in conjunction with the MARK

86, 68 (digital), 92 and SEAFIRE independent GFCSs with

ship's interface being provided through the GFCS, except in

the SEAFIRE independent GFCS. In all applications, SEAFIRE

mode structure and controls should be designed to minimize

operator work load. The followinR list represents some

SEAFIRE operational concepts.

a. For engagements in which the fire control

radars can provide adeauate track da*ta, SEAFIaE may be used

predominantly in DESIGNATION/SLAVE for check-sighting,

threat evaluation, spotting corrections for fall of shot,

and kill/damage assessment.

b. ?or engagements in which the fire control

radars have degraded performance due to ECM or clutter,

SEAFIRE will provide independent target tracking data. The

fire control operator can then select the sensor which is

providing the best track data.

c. In the event of a detection/track function or

equipment failure of the GFCS sensor(s), SEAFIRE will

provide a total casualty capability for the GFCS,

38



DIRE CTOR

IMAGING
ANGLE & RANGE
SENSORS

SERVO
ELECTRONICS

RANGE
DATA

IMAGING LOS LSSNO
& ANGLE CONTRO OC0NTROL CONTROL,

PROC;SSINGINTERFACE

ANNEDATORS

DISPAYSGUNFIR

(COCORTROL

RSYSTEM

MK68
MK86
K(92

SEAFIRE FUNCTIONAL BLOCK DIAGRAM

Figure 1

39



7I

allowing continued gun and gunfire control by providing

target tracking data. This will be accomplished by using the

GFCS displays and controls, where practical, and the GFCS

computer to perform the gun control functions such as

ballistics, ammo select, fuze function and code set, signal

data transmission and mount status.

d. Under EMCON, the SEAFIRE passive imaging

sensors may be used in horizon search, or to evaluate

contacts detected by the ship's other passive sensors. If

tactics permit limited emissions, the passive imaging

sensors may be used with the Laser Rangefinder/Illuminator

(LR/I) transmitting single shot to generate fire control

solutions while remaining covert.

e. For Laser Guided Ordnance (LGO) engagements

SEAFIRE will, as a minimum, provide laser target

illumination during the actual guidance time of the LGO. To

minimize operator workload during this critical period of an

engagement, SEAFIRE should be optimized for automatic target

tracking.

C. REQUEST FOR PROPOSAL

As previously mentioned, a Request for Proposal (RFP)

was released to industry for design and support of SEAFIRE.

r The contractor's response required not only a firm system

design but also lata substantiating his awareness of and

implementation experience in production and life cycle

'1e



support of major weapons systems. The following is a list of

volumes included in the contractor's proposal:

1. Prime Item Development Specification

2. Interface Definitions

3. Master Test Plan

4. Substantiating Technical Data

5. System Project Management

6. Training

7. Support and Test Equipment Plan

8. Contractor Furnished Spares and Repair Parts

9. Producibility Engineering and Planning

10. Technical Manual Organizational Plan

11. LAMPS Electro-Optical POD Engineering Considerations

12. Cost Data

The above list depicts the depth of design/support

detail required of the contractor and are only mentioned to

provide a top level view of the information used by the U.S.

Navy evaluation team.

1. Microrocessors/1irmware Reouirements

The SEAFIRE computer (see Figure 1) is an integral

subsystem which provides for processing of all data

necessary for the functioning of the system. The word

computer is a-misleading term because it connotates a single

item. Although the SEA1IRE contractor was provided an

41

i _ . -el .



AN/UTK-20 computer set with peripheral equipment for use

during system development and check-out, in actuality he was

not prohibited from using additional imbedded processors to

support/enhance the AN/UTK-20 processing capabilities.

Specifically the use of microprocessors was encouraged.

The RFP stated that microprocessors introduced in

SEAFIRE would be selected based on performance,

logistic/maintenance support, ease of programming and cost.

Additionally, microprocessor architecture would have to be

designed to emulate a subset of the AN/UYK-20 computer

instruction repertoire such that presently available Navy

development software (e.g. CMS-2 compiler, assemble debug

tools, data retrieval, data reduction, etc.) could be used

to minimize development/life cycle support risk and cost. At

least a 2e percent memory reserve and a 35 perqent

processing time reserve applies to each processor. In

addition, the firmware development/documentation/testing and

review would be treated the same as the software development

documentation/testing phases. Firmware is defined as all

software that is not resident in the AN/UTE-20 and is

necessary for the operation of SEAFIRE. This includes all

programs developed for microprocessors, microcomputers, and

microcontrollers. The microprocessors were also to be

designed such that effort require, to change the program for

an inservice SEAFIRE would be minimized.

Based on the above description in the RFP, each

contractor tea responded with a distincly different

42



computer architecture for SEAFIRE. Due to this fact and

others as stated before, the evaluation of varying computer

architectures on the same strict performance factors

presented a difficult problem and did not necessarily result

in the "best" computer architecture selection. Be that as it

may, the design presented in the next section is the

evaluation object for this thesis and it is hoped that as a

result of the performance evaluation, specific proposals can

be suggested which may provide possible system enhancements.

D. PROPOSED CONTPACTOR SYSTEM DESIGN

i. System description

SEAFIR!, as described by the system contractor

(21),is an Electro - Cptical Fire Control Subsystem (EOFCS)

modular addition to existing shipboard Gun Fire Control

Systems (GFCS) Mk 86, Mk 68, and Mk 92. This addition allows

those functions previously defired.

The modular design of SEAFIRE permits it to be

configured as an independent GFCS for application onboard

ships on which there is no other GFCS. ( See Figure 2) As an

independent GFCS, SEAFIRE can perform the functions listed

above and all functions neccessary to engage and direct

gunfire against all trackable surface targets, including

direct acceptance of tactical information, interface with

own ship sensors, generation of gun laying orders, and

43

| , ... i - • - " . .. 1 ,,= ,, , . . .. .. .. . . . .



E-4 0 4

E-44~ZC
M LO

4 0-

04 =) 04 E- 
4 u "

H 0O

C-))

0

4 c

CD ~0 w3
H H/ H

C/ E4
H E-4 CD 9 -i

CD CZDC<
HH 0OE-4 E-4

P4I

cn 1 114 OC.Q
4 ~ ~ ~ 0 4N nc

C/3 C CL4E-CW, HEW
> E-1<ZZ HE--I

&4 -. z

E-4w

o z
o

co D

44



interface with gun mounts.

2. General Description

SEAFIRE comprises two primary equipment groups,

which are implemented in accordance with the Standard

Electronic Module (SEM) program:

a) The above deck equipment, consisting of the EO

director. The EO director includes an enclosed turret, which

is mounted on the outer gimbals of the SEAFIRE pedestal. The

turret enclosure is designed to house the Television Sensor

(TVS), Thermal Imaging Sensor (TIS) and Laser Rangefinder/

Illuminator (L1R/I). The turret is temperature-controllel to

optimize sensor performance.

b) The below deck equipment, consisting of the Below

Deck Processor (BDP), Pedestal Electronic Cabinet (PEC),

Environmental Control System (ECS), Power Converter Unit

(PCU), three remote video displays, and a console.

A common SEAFIRE interface allows integration with

host or independent GFCS without hardware or software

modifications. The console for the independent GFCS includes

the processing for gun order generation and interface with

own ship systems. This impacts only the external interface
f

to the applicable ship and not the basic SEAFIRE interface

design.

System processing is performed in the AN/UTK-20
L

computer programmed in the CMS-2 language. Computer program

45



components are required to implement the following

functions: Executive, Input/Output, Control, Displays,

Director Control, Target Motion Analysis, Fault

Isolation/Detection, and Data Extraction. The program is

constructed in modules, with each module structured to

perform one of the processing functions. The multit,.ie of

functions that must be performed within the system are

interfaced and monitored for correctness by the BDP

Interface Controller, which also performs the core

activities associated with fault detection and location.

As previously mentionel, the contractors' use of

microprocessors was encouraged by the U.S. Navy. The

contractor has chosen to implement microprocessor technology

in the BDP unit. Specifically, microprocessors or

microcontrollers are implemented in the following units of

the BDP:

a) Interface Controller (IFC)

b) Automatic Video Tracker (AVT)

c) Data Director (DD)

It was originally intendel to perform the analysis

in this thesis on algorithms running on the microprocessor

architecture. But since much of the architectures' software

and hardware is still in the process of design and the fact

that several areas may currently be proprietary to a

contractor or subcontractor, these architectures were not

evaluated. The particular facet of the system evaluated

(AN/UTK-20 Computer Program Components) will be explained in

1
46

ll -- S ---



a later section.

3.:AN/UYK-20 Functional Description

This section provides an overview of the software

functional Computer Program Configuration Item (CPCI) and

its included Computer Program Components (CPCs). The

software architecture and interface are also described. The

SEAFIRE computer serves as the controlling center of the

SEAFIRE system, receiving data from its separate components,

and routing information to those components reouiring data

from other sources (see figure 3 ).

The SEAFIRE Interface will provide the SEAFIRE

Computer with the means to communicate with all of the

SEAIIRE hardware components, collecting data from each

component and transferring these data to the SEAFIRE

Computer In a single block. Similarly, the SEAIaE Interface

will receive outputs from the SEAFIRE Computer and

distribute these data among the SEATIRE hardware components.

To the SEAFIRE Computer, all of the SEAFIRE hardware

components appear to be a single device, because a single

block transfer is performed for both input and output.

Furthermore, a single input interrupt and single output

interrupt is involved. rue to the appearance of a single

input/output device relative to the SEAFIFE Computer, the

software is discussed in terms of the SEAPIRE Interface (ie,

same as Interface Controller or Below Deck Processor).

47



DISPLAYGENERATOR/
ADCTPROCESSOR GFCS

~TECOMPUTER

ENSIR ORS LO

C THERMAL
IMAGING rUOAI

VIDEO
TRACKER

LASER OWNSHI P
CRANGE FINDEIR SENSORS

ILLUMINATOR

SEAFIRENON-SEAFIRE
DIRETORHARDWARE IHARDWARE

COMPONENTS COMPONENTS

SEAFIRE HARDWARE COMPONENT BLOCK DIAGRAM

Figure 3

'i48



The host GFCS Operator will be able to control and

monitor the SEAIDE System at the Weapon Control Console

(WCC). The WCC is upgraded to include a SEAFIRE Control

Panel for control, and a shared Video Display for

monitoring. The Television Sensor (TVS) or Thermal Imaging

Sensor (TIS), used with the AVT, and director position

readouts will provide the SEAFIRE Computer information

neccessary to determine target azimuth and elevation. The

Laser Rangefinder/Illuminator (LR/I) will provide the range

to the target. Using information from these sources, the

SEAFIRE Computer will be capable of outputting target

position, velocity, and acceleration to the fFCS for

engaging the target. The optically aligned TVS, TIS, and

LR/I common optical pointing will be controlled by a single

azimuth and elevation rate command from the SEAFIRE Computer

(see figure 4).

The target image data received by the TVS and TIS

will be sent to the AVT, where the target position is

calculated. The AVT will determine target position relative

to the upper left corner of the video raster and send the

target relative position data to the SEATIRE Computer at a

60 Hz rate.

AVT data may come from either the TTS or TIS, but

not simultaneously. The data source is specified by the

operator at the SEAFIRE Control Panel. Additional options

are available at the SEAFIRE Control Panel that affect the

data flow from the TVS/TIS to the AVT and actual processing

49



GENERATOR/ _ CRT

THREE SEAFIRE PROCESSOR

SENSORS MOUNTED
ON SAME DIRECTOR

TVSAVT

SEAFIRE

C TIS COMPUTER

[ RANGE

LR/I -L ABSOLUTE AZIMUTH-ELEVATION

0 AZIMUTH RATE-ELEVATION RATE

DIRECTOR

DIRECTOR GIMBAL
AND PEDESTAL MOVES
ALL THREE SENSORS
SIMULTANEOUSLY TARGET POSITION]

VELOCITY AND
ACCELERATION

I. SEAFIRE HARDWARE COMPONENT DATA FLOW DIAGRAM

Figure 4

50



within the AVT, embedded microprocessor. The operator may

select one of up to six filters to modify the video input at

the TVS/TIS. For the TIS only, he may control the Gain,

Bias, and select either Black or White track. For the

TVS/TIS he may control video Enhancement, Focus, and select

either Wide Field Cf View (WFOV) or Narrow Field Of View

(NFOV). At the AVT, he may select either Scene or Point

digital tracking.

The SEAFIRE Computer will pass the target position

through a Kalman Filter; (1) to smooth the target position

to a steady state, (2) to calculate target position,

velocity, and acceleration and (3) to predict where the

target will be in the next update cycle. The SEAFIRE

Computer will then output target position, velocity and

acceleration via NTDS Slow Interface, to the GFCS, so that

the GFCS can compute a ballistic solution. The data input

and output over the NTDS Slow Interface will be identical

for the four configurations of the SEAFIRE System (Mk 86, Mk

68, Mk 92 and Standalone); therefore, only one version of

the computer program need be maintained. The development and

maintenance of only one computer program reduces costs and

accents software commonality. The SEAFIRE Computer also will

output commands to move the Director so that the target will

remain in the TVS/TIS FO.

The SEAFIRE Computer contains one Computer Program

Configuration Item (CPCI); the Operational CPCI. The

Operational CPCI is used as a GFCS to provide target

51

,lr
r lP - - i!



tracking and engagement and to maintain the SEAFIRE system

in a state of operational readiness. The Operational CPCI

performs eight major functions:

a) Executive

b) Input/Output

c) Control

d) Display

e) Tracking

f) Director

g) Fault Isolation/Detection

h) Data Extraction

The CPCs listed below perform the eight major

functions of the Operational CPCI:

a) Executive

b) SEAFIRE Input Interrupt

c) SEAFIPE Output Interrupt

d) NTDS Slow Input Interrupt

e) NTDS Slow Output Interrupt

f) NTDS Fast Input Interrupt

g) NTDS Fast Output Interrupt

h) Control Panel Input

i) Control Panel Processor

J) Director

k) Designation

1) Target Motion Analysis

m) Alphanumeric Display

n) Symbology Display

52



o) Puilt In Test

p) Performance Monitoring

g) Data Extraction

r) Clock Synchronization

The functions allocated to each will not be described

in detail. The data flow between each of the above CPC

functions is shown in Figure 5. As can be seen Target Motion

Analysis (TMA) it is a major central function to the system

as it includes I/O to several other key functions. A

description of the TMA is delineated in the next section.

&. Target Motion Analysis (TMA)

The TMA CPC is called by the Executive CPC at a 4 Hz

rate to compute target position, speed, and acceleration for

output to the GFCS and to the Display CPC. Executive rate

will be 4 Hz since GFCS outputs are required at this rate.

The TMA CPC will use the AVT reported target position

relative to the raster upper left corner ?osition, Boresight

Offset, Sensor Type, and Director Azimuth and Elevation to

determine the target position, velocity, and acceleration.

The Director will provide inputs neccessary to

determine Sensor Line Of Sight (LOS) in terms of azimuth and

elevation, ard the ATT will provide inputs such that target

azimuth and elevation relative to the LOS can be obtained.

In manual track, only the Director angles are used. The LR/I

will provide target range as the input.

53

I' -. -



-BUILT-IN
.TES T

_CONTINUOUS
SEAFIREMONITORING

-.INPUTIRI N U -SYMBOLOGY

rCONTROL CONTROL A- OUTPUT
tI IN U 

R C S O DISPA Y .1- ----- S AF R

P EL PAEL NU MRIC

' ,ET

ISLOW KI
[INC DSIGATIN !

ZER- 
DATA CTO

NTDS 1Ii -ETCI
NTDS SLO

iOUTUT
. OUTPU

. SAFIR COMUTE SOFWAREDATAFLO

,TD 
FigST

54



The AVT will report the target azimuth error and

elevation error. This position- must be transformed to a

position relative to the LOS, and must be adjusted further

for the effects caused by Control Panel selections. Finally,

the position in elements must be converted to units in

degrees. Control Panel selections have the effects listed as

follows:

a) The number of degrees/element is different

depending on wide or narrow FOV selection.

b) The Boresight offset varies as a function of

TVS or TIS sensor selection.

c) The algorithm can be changed, and therefore, the

target position.

The TMA CPC will include the necessary processing

to:

a) Correct for angle bias, convert target data

to the appropriate reference frame, and correct

for parallax.

b) Prefilter the data to correct for timing delays.

c) Perform TMA computations reouired to derive

smooth target state variables (position, velocity,

acceleration) in both the stabilized Spherical

and Cartesian coordinate frames.

d) Perform necessary computations during coast

conditions.

e) Output track quality data.

At the end of the Kalman filter, maneuver detection

55

r!



is performed. The maneuver detection subroutine is part of

the TMA CPC but Is not discussed due to its classification.

1. SUMMARY

Now that the system has been described and methodologies

have been discussed in general for performance evaluation of

computer systems, the next logical step is a specific

application of one of these techniques. The next section

provides a description of the performance tool that is to be

applied in the evaluation of the SEAFIRE system.

56

I' -



V. USE OF AN YXISTING'COMPUTER SYSTEM PERFORMANCE TOOL

A. INTRCDUCTIOM

The methodology to be used for the computer performance

evaluation is the one designed by L. A. Cox, Jr. (4). This

section provides a summary of his approach.

In his dissertation, Cox described the development of a

methodology for efficiently predicting concurrent computer

system performance. This methodology allows the estimation

of performance of an existing (or conceptual) computer

organization operating on a linear mathematical algorithm.

An existing program is taken and the control structure of

all or some representative kernel of the code is expressed

in a fashion which makes the potential parallelism

exploitable. For a given computer system, the control

structure dictated by the software can then be mapped onto

the hardware structure, and the performance predicted.

The key to this process is the representation of a

kernel program or one of the basic cyclic events as a

special kind of Petri Net simular to a marked, directed

graph. In the directed graph, each arc can be regarded as

having some propagation delay which is dependent upon the

performance of the computer system executing the program. If

these delays are fixed and known, then the Question of

performance reduces to a question about the minimum period

for the cyclic behavior of the marked graph which represents

57



the program.

A requester/server interface provides for cons'tructiop

of a two graph structure which allows the representation of

algorithms an4 hardware organizations by separate graph

structures. This permits each graph to be constructed in

such a manner as to both express the control structure and

to maintain a direct and meaningful representation of the

important concepts being modeled.

B. DEVELOPMENT OF THE DESIGN EVALUATION SYSTEM

An effective concurrent computer system design tool must

consider the characteristics of both systems and software on

a more conceptual level. Hopefully, the same descriptive

system could be employed to describe both the hardware

organization and the software requirements. The design

evaluation system should provide for the inclusion of

varying levels of detail in some hierarchical manner and

should provide quantitative results of concurrent systems in

some cost effective manner.

Why use Petri-Nets for the predictive system? A

Petri-Net may be thought of as an abstract, formal model of

information flow. As such, it is possible to describe not

I. only the information flow, but the controls and constraints

of such flow. The Petri-Net graph models the static

structure of a system In much the same manner as a flowchart

models te structure of a computer program. In order to

52



represent the dynamic properties of the system to be

modeled, a Petri-Net can be "executed" to respond to the

flow of information (or the occurrence of events) in the

system.

The static graph of a Petri-Net is composed of two types

of nodes, circles which are traditionally called places, and

bars which are called transitions. These nodes are connected

by directed arcs which run from either places to transitions

or from transitions to places. The source of a directed arc

is referred to as the input, while the terminal node is

referred to as the output.

The dynamic execution of a Petri-Net is controlled by

the position and movement of information, as represented by

markers which are called tokens. Movement of the tokens

proceeds according to certain rules. A token or tokens move

when a transition fires. In order to fire, a transition must

be enabled, that is all of the places which are inputs to

the transition may fire. When a transition fires, the tokens

are removed from the input places, and tokens are placed on

all output places of the transition.

Petri-Nets can model actual parallel processes by

attaching some significance to token movement. For example,

multiple outputs from a transition create multiple tokens

upon firing, vhich could be interpreted as a fork

operation activating multiple parallel processes. Similarly,

the multiple inputs to a transition (which must all be

marked for the transition to fire) could be interpreted as a

25

59



Join' operation terminating or merging Independent parallel

sequences.

In: each case, the status of the execution at a given

time can be described by defining the status of the tokens.

This distribution of tokens in a marked Petri-Net is called

the marking, and defines the state of the net for a given

instant. Figures 6 through 9 show the different stages of a

marked Petri Net progressively at incremental time units in

the system.

As first formally defined by Petri, Petri-Nets were not

always deterministic. For the purposes of performance

evaluation, a small restriction was made to eliminate

non-determinism, something not generally sought after in

either hardware or software.

Petri-Net concurrent control system models have many

characteristics which are desirable in a concurrent computer

system performance prediction system. This model is capable

of representine both hardware and software systems and is

hierarchical in nature. These characteristics are important

in the predictive system.

C. THE PETRI PERFORMANCE PREDICTIVE PACKAGE (P4)

Io The reouirement for an architectural design aid existed.

Cox created and implemented on an experimental basis, a

nerformance prediction system based on Petri-Net models. The

system, named P4, standing for Petri Performance Predictive

60

-- ........ . ... . . .



* i ~7

A MARKED PETRI NET (TIME=O)

t3 P1 ti P2 t2 P3

P4

Figure 6

A MARKED PETRI NET (TIME:1)

t3 P1 ti P2 t2 P3

0:

* A MARKER

P4 OR "TOKEN"

Figure 7

!L

61



A MARKED PETRI NET (TIME=2)

t3 P1 ti P2 t2 P3

P4

Figure

A MARKED PETRI NET (TIME=3)

t3 P1 ti P2 t2 P3

*= A MARKER
P4 OR "TOKEN"

Figure 9I.

I
S 2",

62

L 'h ... .. .. *I



Package, is described below. Major components of the P4

system, and the system's intended employment are shown

graphically in figure 10. The model implemented at NPS does

not utilize the MAC macro expander or the macro library.

The design of a new computer system (or the modification

of an existing system) is usually initiated with the

realization that a problem exists whose solution is both

important, and not economicaily feasible in some sense. The

P4 system is intended to be used in cases where a problem

has been defined and a system architecture is to be

developed. In response to this problem, the designer

develops a solution concept. This concept includes the

algorithmic portion of the problem, and some computer

organization which hopefully will solve the problem within

the various constraints.

At this poirt the designer describes this solution

concept In terms of the P4 system. A P4 program (P5)

consists of a discription of the computer system

organization and capabilities. As we will see later, these

descriptions are Petri-Nets, and In order to make use of the

heirarchical nature of these nets, ani to express system

organizations in a more concise and convenient manner, a

macroprocessor was included in the system; although one is

not used in this thesis. A P4 program can be either a "pure"

P5 description, or can make use of the macro facility, in

which case it is referred to as a P5M description. This

description of the solution concept Is then

63

r i



w0

0E-4

0 al

E-4 4

E-4 2:4

00 p4

6E-

I' -r



evaluated In a dynamic sense and produces an analysis of the

system's predicted performance.

The performance predictions are made on the basis of the

execution of a Petri-Net simulator. This simulator operates

on the P5 description of the proposed system. A complete P4

program which is to be evaluated by the Petri-Net simulator

consists of three sections: a hardware section, a software

section and a dynamic section. The hardware section consists

of a description of the basic subsystems of the computer

system and some degree of subsystem interconnections. The

network which represents hardware Is ouantified in terms of

its operation in time. The software section consists of a

description of a Petri-Net which represents the algorithm to

be executed on the system. This net is quantified in terms

of the basic functions which are to be required of the

hardware. The dynamic section contains certain output

instructions and specifications of the Petri-Net's initial

conditions. Yormally, both the software section and the

hardware section are merely descriptions of static Petri-Net

structures. Performance prediction comes from the attachment

of certain significance to the , structures and certain

restrictions on the movement of tokens or markers within

these networks.

The dynamic nature of Petri-nets is used to approximate

the actitively of the proposed computer system as it

executes the algorithm of interest. Accordingly, the two

Petri-Nets, software and hardware, can be viewed in a

65

r ,- I . .. 'II l:



requester/server context. The software or algorithm makes a

series of requests for the services of the computer system.

The computer system fulfills these requests according to the

constraints of its design.

In the hardware net, events roughly represent operations

in time. A collection of one or more events are used to

represent a functional unit and its temporal response to the

hardware control constraints. Token movement through the

hardware net represents the data and control flow of the

hardware system. A simple example of a P5 hardware

description is shown in figure 11.

The software net's events represent basic reouests for

service. For example, an event might represent a request for

an integer addition. The flow of tokens, which is initiated

by a single marker on the event "BEGIN", represents the

logical flow of the algorithm. An example of the hardware

and software net is shown in figure 12.

Once these two Petri-Net structures have been defined,

they can be executed together in a manner which will

simulate the operation of the computer system. The

interaction of the two nets is controlled by the

"reouester/server token arbiter.' The network simulation

begins with the marking of the "3EGIN" node of the software

net. This net is then executed according to standard Petri

rules. The arrival of a token at a place in the net is

interpreted as a request for service, the type of service

depending on the type of the place. Upon arrival, the

66



U,)

o

0G).
>4E-4

c"J~~ C)) w0~

I-E-4
0 --

w3 C/ 0 C

W 04 zE- E-
z H 4H

C144

• HH

Im .

0 0 0

E-1>>4 H
w -E2~ H

~424E4E -4c/ 2 E-1

, , <<<.

I-fE-4 E- PL4-4

O~0EC9 E--f E-4k

Ir

67

iz
-- . .. . .. . . . . . . . . . . I Iz



C14

I-D~
E4+ +g

CD 0

E-4

z E-4
zH

C. C')W 0

CCD

E-4~

>4 4

> 0
0Z

E-- 00 "' r3W 11 z

U C-) E-4

CD~ HC +

a4E4 - E- E- 4 I E-4- &4

4  E-4 E1 E- C/ '-

H 1-4 ~ HI40

C.D 4 13 -I ++ 0 .14 68



arbiter is notified of the request for service.

The arbiter removes the token from the net, and allows

the software net execution to continue until such time as no

further moves are possible. At this time, the arbiter

initializes the appropriate, hardware units which correspond

to the requests by marking them with tokens.

The hardware net is then executed one step. If any

tokens reach events which correspond to completion of

requested service, the arbiter is notified. Here again, the

token is removed, and the token of the software net whose

movement caused the original request for service is replaced

by the arbiter. This cycle is repeated, with the execution

of the software network, followed by execution of the

hardware network. A P5 dynamic section and the P4 results of

the examples shown in figures 11 and 12 are shown in figure

13.

Examples were tried by Cox and predicted results agreed

well with actual measurements in most cases. Some cases with

wide discrepancies pointed out a significant characteristic

of the P4 methodology. When maximally parallel

representations of the hardware and the software are

provided to P4, the resulting prediction in most

circumstances represents the "best case" execution time.

This means that in cases where a system has been either

implemented or simulated at the bit level, PA predictions

can be compared with bit level timinps and used as an

indication of the efficiency of the assembly code generated

69

r I



I- > .

83/

wI I
+ +

w W E-
E- E-->>4

E-4 zCzw

r- 0 -

0.1 0

w 0Z 0 0C.E-
E- 0 P0w >4C-

U0 0 . . .A /
W P4 IX C14 CY U4E- CD 2 *

0- HH HH I

V) E- E- - E-4 &42

(0

N 0 z 2 -

i~0 20, N 0

ElP4 C/
< 70



by either manual or automated means.

The results Cox received indicated that the P4

methodology provides not only a simple and accurate method

for predicting computer system response but is economical of

modeling resources as veil.

D. LIMITATIONS OF THIS APPROACH

The Petri-Net is a concurrent control system model of

demonstrated power; however, Cox indicated that it does have

some limitations, perhaps the most significant of which is

its inability to represent conditional events. Petri-Nets

are not able to handle these conditions as they are

traditionally designed. Some work has been lone on

developing extensions to Petri representations which

consider this situation though a model which basically

represents data as tokens is difficult to extend to data

value dependent situations.

Cox indicated that these extensive modifications do not

appear to be justified in view of the intended operation of

the performance model. In general, the linear mathematical

models which drove his research can be characterized by a

sintle or at most a few main computational loops. The

performance of the loop calculation drives the overall

I. performance of the program. These loops can be represented

as linear code, and their performance evaluated. Using this

methodology, the conditional path problem is avoided.

71



Another limitation of the P4 approach stems not so much

from the concept, but fromthe realization. Both software

and hardware must be described in terms of descriptions of

Petri-Nets. These 4escriptions are "programs" which are

subject to all of the problems of any human generated

program.

Experience has shown that the representation of existing

computer programs and algorithms as Petri-Nets is usually

straightforward. Few errors have occurred at this stage. The

automatic generation of these descriptions from a FORTRAN or

other algorithmic language source may be possible.

The representation of hardware structures has proven a

bit more complex. The hardware Petri-Net program must

carefully inclu4e all explicit and implicit limitations to

concurrency which the system will impose. This reouires

careful consideration of each design, and careful

programming, sometimes by persons without significant

programming experience. In hardware systems which make use

of variable time intervals for execution (such as the data

dependent nature of completion signaling devices), some

average propagation delay must be substituted. This

complicates somewhat the piogramming problem by demanding a

detailed analysis of some sub-systems, and by including

I. "average performance" figures.

There is one other property which should be mentioned.

Currently, there is considerable discussion of "data flow"

computer architectures. These are machines which would be

72



based on the principle of executing instructions in response

to the arrival of operands rather than In response to some

sequential or explicit control flow. These machines are

conceptually important because programs expressed in data

flow form are free from sequencing constraints other than

those required by the algorithm, and a processor using data

flow representation can achieve highly parallel operation.

In the Petri performance model, all programs are expressed

in essentially a data flow notation. A Petri performance

prediction as previously described makes use of all the

possible parallelism of both the hardware and software, and

is thus "best case" in some sense.

This "best case" prediction property stems from the fact

that when properly represented in Petri-Net structures the

hardware and software descriptions describe potential

parallelism on a global basis. The mapping of requests for

service into actual hardware operations makes use of this

global parallelism, and the limits are only those explicit

in either the hardware or software. It is this property of

the Petri performance model that makes it useful in the

evaluation of the efficiency of generated code, aid makes it

a valuable tool in investigations of compiler and language

development for hiehly parallel machines.

Cox's initial experience using the P4 methodology has

shown that performance predictions based on dual Petri-Net

representations of hardware and software structures are

accurate and efficient in terms of resources required to

73



make the predictions. Additionally, the system is easy and

sufficiently general so as to permit detailed investigations

of alternative computer system organizations such as would

be expected in the design and development of a new system

such as SEAFIRE.

E. SUMMARY

The Petri performance model has some limitations which

must be understood before it can be properly applied;

however, when intelligently used, it comes very close to

fulfilling all the goals of an ideal design tool intended

for use in the conceptual development of concurrent computer

system organizations. The next section deals with the actual

implementation of the technique described in this chapter.

I.

74



VI. IMPLEMSNTATION/EXPERIMENTAL PROCEDURES

A. INTRODUCTION

This section provides a description of the hardware and

software model for SEAFIRE and how this model was executed

by the Petri-Net simulator. Some of the detail that was

required concerning the actual functioning of the SEAFIRE

software was not available and therefore certain assumptions

had to be made in order to develop these netsworks. The

results of the analysis is covered as a function of the

number of target loops (TMA) generated.

B. A DESCRIPTION OF THE PROGRAM

A discussion of Computer Software Data Flow at the CPC

level was provided in Chapter IV along with a diagram of how

the CPCs interface (Figure 5). Since it was decided to

perform the analysis at the CPC module level, a

representation of the hardware function for each module is

best represented as a time interval delay as predicted by

the cortractor. Table 1 depicts the contractor's timing

estiiates for each module in the Automatic Track Mode. These

figures have been rounded off for ease of implementation.

Figure 14 represents the SEAFIRE hardware (Machine Net).

Each execution cycle (D1,D3,....D260) is utilized for one or

SI/ more of the CPCs of Table 1. The interrupt cycle represents

75



the first seven CPCs listed. These interrupts occur at a

rate of 645 per second; and since one cycle eguates to 100

usec, one interrupt would occur approximately every 15.5

cycles. The other calculations are linear representations of

the execution time for each CPC.

Figure 15 lepicts the best estimate of how the software

functions for SEATIRE in the Automatic Track Mode. Steady

state was assumed so that the designation function could be

ignored. TMA was first executed for a total of two target

loops, then was varied on additional runs. The intention was

to determine the loading capacity for the SEAFIRE computer

at these varying stages of number of target loops. The other

routines are interrupt driven from a clock and are depicted

in the overhead loop.

As previously mentioned, the basic simulator was

available in a form which ran on a CDC-6700 computer. A

large amount of effort to modify this simulator resulted in

the program of APPENDIX A that now runs on a PDP-11/50

minicomputer at NPS. Computer printouts of the resultant

output is not provided as it was felt that It would not have

been of significant benefit to the reader. The results of

the analysis are discussed in the next section.

I.

21

76

_ , m m



Computer Program Time Per

Components Execution(100us) Rate(Hz)

Executive 1 490

SEAFIRE Input Interrupt 1 60

SEAFIRE Output Interrupt 1 60

NTDS Slow Input Interrupt 1 16

I4TDS Slow Output Interrupt 1 16

NTDS Fast Input Interrupt 1 1

NTDS Fast Output Interrupt 1 1

Control Panel Input 4 60

Control Panel Processor 6 10

Director 6 60

Designation 70 16

Target Motion Analysis 260 4

Alphanumeric Display 12 60

Symbology Display 20 20

Bullt-in Test 3 60

Continuous MonitorinR 120 1

Data Extraction 3 60

Clock Synchronizer 1 1

I. SEAFIRE COMPUTER TIMING ESTIMATE

FOR AUTOMATIC TRACK MODE

TABLE 1

77



rlT

ITT 26PUT

I.T

GATE



z
00
E-4 0 GO E-

wL

~crJ 0
E-E-4

00

131.. *iI0
< a4

IEX41

z P4 0
C)

E-4

CNl

I.e

E- -

J E>',E-47: < b



C. PRESENTATION OF RESULTS

Initial results shoved that the performance of the

SEAFIRE system under development was approximately 30% below

design goals. Detailed analysis of the performance

prediction shovee. significant problems in the methodology

used to predict the performance. The multiple cyclic loop

structures that are present in the SEAFIRE hardware/softvare

representation present deadlock like competition for the

hardware resources. Several times during processing it was

evident that one cyclic loop would gain "control" of the

hardware to the exclusion of all other processes; this loop

consuming all hardware resources available. In a real time

system, an Executive routine would drive the interrupts

based on a clock. This reflects a problem of using the P4

system as it currently stands to model real-time (interrupt

driven) systems.

Subseauent experiments indicated that the computer

program flow could be manipulated in a cyclic (synchronous)

manner to approximate an interrupt driven environment.

Although the results closely replicate the contractor's

predictions concerning the timine estimates required for

-program execution, a true representation of the real time

fire control program was not created.

It would also have been preferred if the processing of

the embedded microprocessors could have been included;

although it would have been rather simple to implement at

I.'0



this level, the results would not have been significantly

altered. A lower level of detail ( ie, software running on

the actual hardware ) would provide the expected output of a

faster, more efficient fire control solution which is less

dependent on the centralized processor concept.

The final timing estimates indicate that the proposed

software design will meet the Navy's processing time

requirements and have the capacity of expansion to include

additional functions as syste development proceeds.

After further analysis, the structure of the programs

were modified so that a maximum number of target loops could

be accomjlished without consideration for the administrative

functions.

I.

I

18



VII. CONCLUSIONS AND RECOMMENDATIONS

The U.S.Navy and DOD are not doing an adequate job of

specifying and developing the criteria to be used as

standards for computer system evaluation and the prediction

of their performance. The tools are available, but yet past

methods are implemented without considering innovative

industrial ideas. Only token amounts of funding are expended

where the payoff is the greatest; in early conceptual

development phases.

Despite the advances in these areas, the question also

arises as to whether the DOD can exploit these ideas with

the support of industry. A number of approaches have been

actively pursued over the last few years, however, there is

not currently a firm direction in employing these new

techniques in industry or DOD.

A new dimension for the analysis of computer

architectures has emerged. These methods can enhance the

performance of computer systems and create an iterative

atmoshere between industry and DOD which is required for

future systems development.

The methodology presented in this thesis should be

considered as a partial effort in this direction. The

approach is theoretically sound but its implementation

requtres a more thorough analysis with appropriate tailoring

13r its implementation. The rapid development of computer

"-*role., y 4ictites that the DOD be able to better cope with

92



this pace. Further research and development into the causes.

and the nature of the problem of simulating an interrupt

driven real-time combat system is highly recommended.

Section V mentioned that the P4 system is directly analogous

to data flow computing models. If the problem is inherent in

the P4 system, it may very well be inherent in data flow

computing models, which will inhibit their use in this type

of analysis. For this reason, it makes further research in

this area imperative prior to other implementations. It is

recommended that this and other methodologies be explored

further and hopefully utilized in the near future.

I.

I

!8



APPENDIX A

PROGRAM LISTING

Petrinet.ftn Paoe I Tuob Nov ?7 06:18:55 1979

2 c

3 C PPOGfRAM PFTRI-NET RFQIJESTOR/SERVER SIMULATOR

4 C
6 C
7 C THIS PROGPAM IS THE REQIJESTOR/SERVER INTERFACE
8 C mnDEL FOR IMPLEMENTATION IN THE PS NETW'ORK.
9 C

10 C
1,1 COMMON/NEI/ NET(255,'*),NTRNS(255,3),NFRE(99,2),
12 1PIXTF KT IME o.NFV N~TR
13 CUMMON/SOFT/ JNiET(255,I) ,JTRNS(255,3),JEV,JTR
14 C
15 Do 0o T=1,255
1b NET(T,1)=()
17 NTPNS(Tol)=0

IR JlFT1, 1) :0
19 JIPNS(1,1)=O
20 0005 CON TI il IF
21 CALL INIT
22 C
23 0010 COU!T!i UE
24 CALL SrANfk(5) 02
25 TF(mACHS(l,5H8EGIN,9).E0.1) GO TO 02
26 IF(MAICHS(1,3rtENf,3).E0.1) GO TO 0040
27 CALL EPRRRP1,7m1 MAIN0,0)

28 Gu TO 1040
2.9 C

*30 0020 CON rTNd'E
31 IF(MATCH9(P,7HMACHTNE,7) .E0. 1) CALL STATIC(NET,
32 INrRNS,NEV,NTP)
A IF(MATrhS(P,7HDYNAMIC,7.FQ.t) CALL nYNAMU
34 IF(MATCHS(2,7hPR0GPAm 7).Eu.1) CALL PGMNET
35 IF(MAICHS(1,3HFN'O3) U3.1) GO TO 0010
36 TF(MATCHS(1,7HmACIINE7).NE.1 .AND. MATCHS(1,
37 17HnYNAMLIC 7).IIE.1

38 1 *AND. NMAICHS(1,7HPROGRAm,7).NE.1) GO TO 0030
39 Go to 0010
4*0 C
41I 0030 CONTIN~UE
4*2 CALL ERRRRC(1,7H MAjN,0,0)
4*3 C
44' 0040 CUNTINIJE
495 CALL DuIMP (NET NTRN4S, ,iFRE ,NXTF,KTIMENIEV,NTR)
4*6 CALL 0IJMP(JNE ,JTRNS,NFREvNXTF,KTIM, JFV,JTR)
4*7 CALL TnJ'mP
4*8 CALL E)CIT
49 END
50 C
51 C
52 SUFRflUTIME INIT

*5'; CO;40iNFr/ NLFT(255,*) ,NTRNS(255,3),NFRE(q99,2),
54 lNXTF ,KTIME ,NEV ,NTN
55 COMNfl/CTRLR~/ TMVDF,TCG(250)
56 Cummnt4~/RANfl/ RANOP
57 C
58 C STAPT-UP ..... DEFINE DEVICES FOR OOTPUT,
5Q C EFTA-IPCTPLP MODE AND RANDOM MODE. PROBABILITY

60 C FRO>1 TTY. CPEATFE A FICTICIOUS NOOF 'RANDOM'.

84



oetrinet.ftn Pae2 Tue Nov P7 06:18:55 1979

61 C
b? C
b3 OPEN(UNIT:7,NAmE=:NETOUI.LST',TYPE='NLWI)

bil OPEN(UNIT=SNAN'E=DP0:NETINP.INP; 1 'TYPE='OLDO,
65 IPEADONLY)
b6 0100 FORM'AT(/,' NET-SIM VER. 24',//)
67 wRTTE(7,0100)
68 0120 FORMAT(5X,I*PROGRAm START-UP MODE= ',IS,
6q 11 RAND. PR06.z 1,F6.3,//)

70 CALL SCANR(5)
71 CALL xINTGR(1,TMODE)
7? CALL XFLOAT(?,PANDP)
73 IiITE(7,0l?0) TMODE,RANOP
74 C CREATE THE PHONY NOJDE ... AS NUMBER 255
75 CALL NAMEIT(NET(?59,1),bHRANDOMp6)
76 RETURN
77 FNI)
7A C
79 C
80 SUBROUTINE STAT IC (KNET ,KTRNS,KEV,KTR)
81 CO'mrC1h/DmP/ NFREF1
8? COMMflI'/SCAN/ N1UMBR,IkORn(I5,l0)
83 COMIMON/\JEI / NET(255,Li),NTRNS(255,3),NFRE(999,2),
814 1NXTF ,KTImE,NFV,NTR
85 DImENSIUN KNET (255,4) ,KTRNS(?5S,3)
86 RYTE 1EMP
87 DiIMENSION TEvP(10)
8A C
89 C NETF DE FI NI TIO0N S
90 C
91 C NFf(N,1) = POINTER TO NAMES ARRAY vjHICH HOLDS NAME.
92 C NFT(N,2) = vARKER (0 --) Ui4MARKED)
93 C NET(N,3) = PESOI)flE R~EQUIIREMENTS (TYPE)
94 C NET(N,4) = OUTPUT FLAG FOR EXECUTION PRINT.
95 C NEV IS NUMP1EP OF EVENIS
96 C
97 C
99 C NITR NS DE F IN ITIO N S
99 C

100 C NTNS(N,1) =NAME OF TRANSITION
101 C NTRNS(N,21 = POINTER TO TRANSITION INPUTS IN FREE
10? C SPACE
103 C NTRNS(N1,3) = PUTiwTEP TO TRANSITION OUTPUTS
104 C NTP IS NUJMBER OF TRANSITIONS
105 C
106 C
107 C N F REE n F FIN ITTTON S
108 C
10q C NFRE(N,1) POINTER TO AN EVENT IN NET
I10 C NFRE(N,?) POINTFR TO NEXT ENTRY IN NFRE OR NIL (0).
III C NXTF IS POINTER TO NEXT FREE SPACE.
112 C
113 C BEGIN STATC LOOP TARLE BUILDING

*114 0200 CONTINUE
115 CALL SCANR(5)
116 IF(MATCHS(l,3HEN0,3).EO.1) GO TO 0291I.117 IF(MATCHS(j,7HOECLARE,7).NE.I) GO TO 0290

*118 TF(N!ATCHS(3,SHEVENT,5).El.I) GO TO 0210
119 TF(M'-ATCHS(3,1OHIPANSITONl,l0).EO.1) GO TO 0240
120 cO TO 02q0

2' 85



Petrinet.ftn Pace 3 Tue Nov 27 06:18:55 1979

121 C
122 0210 CONTINUE
123 CALL J40RD(2 TEMP)
124 NEXT:IFISIDN(fEmPfKNET)
125 IF(NEXT.NiE.0) GO TO 0220
126 KEV=KEVtI
127 TF(IKFV.GT.25,9) GOi TO 023n
128 CALL NAMTNP(KNET(KFVo1),2)
12Q CALL XINTGP(NUMHj,NEXT)
130 KNEr(KFV,3)=NEXr
131 90 TO n200
13? 022n CONTINUE
133 CALL EPRRRP(3,RH STATIC,O,0)
134 60 To 0200
135 0230 CUNITN!JE
136 CALL E.RRRR(?,8H STATIC,0,0)
137 C
138 0240f CONTTNIUE
13Q CALL JW'ORD(2,ITEMP)
14~0 M1=IFINDT(TEN'P,KTRNS,KTR)
141 IFffil.EO.KTR) GO rO 0250

142) CALL ERRRRR(3,SH STATTC,0,01
14i3 GO TO 0200
144L 0250 CONTINUE
1iJ5 CALL SCANR(5)

*14 Bi F(NATCH5(1,3HENf0,3).E0.1) GO TO 0200
147 IF(MAICHS(l,5HINPUT,9).EQ.1) GO TO 0260

148 IF(MATCHS(1,6Ht-UTP(UT,b).EQ.1) GO TO 0280
149 CALL ERRPRP(c;,SH STATIC,0,0)

150 GO TO 0250
151 0260 COANTINUE
152 CALL JpORO(NUMNP,TEMP)
153 N2=IF1NDPM(TEP,K~NET)
154 TFO'J?.NL.0) GO TO 0270
155 CALL EPRPRPUJ,Sh SfATTC,ilJOPD(N'JMS,I),0)
156 GU TO 0250
157 0270 CONfTNUE
15A CALL SFTFRE(RTPNSCN'1,2),M2)
159 n;o TO 0290
160 0280 CONTINUE
1bi CALL JWOPD(NUMP,TEMP)
1b2 M2=IFINON(TEvP,KNET)
163 IF(N2.EQ.Ul GO TO n260
1b4 CALL SETFRE(KtRNS(NI,3)vM2)
1lbS GO TO 0250
1b6 C
167 0290 CON TTIr4NUJE
168 CALL ERRRRP(5,SH STATIC,0,0)
169 Go To 0200
170 C
171 0291 CONTTIUE
172 TF(IMAFPST.NE.0) GO TO 02Q2
173 IMFRST~t
174 NFPEEI=NYTF
175 0292 CONrTNIIE
176 CALL LISTX(KNiET,KTPNS,I(FPEdJXTFKTIME,KEV,KTR)
177 PETURNI.178 AFN D
179 C
1d(0 C

'1' 86



Petrinet.ftn Pane ~4 Tue Nov 27 06:18:55 1979

181 SUB3ROUTINE JWCjRD(N1MBER,STRING)
182 BYTE IWOPt)
183 COMMON/SCAN/ NUMB,TVYCRO(15,1O)
1811 BYTE STRING
185 DIMENSION STRING(10)

*186 DU 0295 T=1,10
187 0295 STPING(I):IwOR0(NUmBER, I)
188 D9000 FORM4AT(' JWORD:NUMRER,STRING: ',1 ,2xOAI)
1890D WRITF(7,O000) NUMfER,(STRING(I),I=1,10)
190 RETURN
191 ENn
192 C
193 C
19'4 SUPROUTINE SFTFRE(TPO1NT,IVALUE)
195 CUMMON/NEll NiET(255,I) ,NTHNS(255,3) ,NFRE(999,2),
196 1NXTFKTIME,NEV,NTR
197 C
19R C FOR TRAN!STITON INPUTS OR OUTPUTS, SET UP AND
199 C ENTER VALUE IN THEf CHAIN POINTED TO BY rPOINT.
200 C
201 IF(TPOINT.FQ.0) 6O TO 0310
202 NEXI:IPOINT
203 C
204 0300 CON T INLE
205 NEXOLD=NEXT

*206 NEXI:NFRE(N'EYT,2)
207 IF(NExT.NE.U) GO TO 0300
20A C E'ND OF CHAIN
209 NxTF=NYTF+l
210 TF(NY1F.r.T.9Q9) CALL ERRPRR(2,PH SETFRE,0,0)
211 NF9E(i4EXnL,2)=NXIF
212 NFRE(NXTF,1)=IVALUE
213 RETURN
2141 U310 CON TIN UE
215 N'XTF=NXTFt1
216 IPOINT=NX[F
217 NERE (NYFF, 1) IVALUE
218 RETURN
219 END
220 C
221 C
222 FUNCTION IFINOT (NAME,NTRNS,NTR)
223 BYTE NA%1E,TEWP
22L4 DImENSION NAwE(10),TEMPC10)
2Z5 DIMEN5ION' NrRNS(259,3)
226 C
227 C FIND THE TRANSITION 'NAME' IN THE TABLE
22A C RETURN NUMdFR
?29 C
230 09000 FORMAT( IFIN'DT: NAME,NTRlr2X,IOA1,2X,I*)
231 I) ViRITF(7r9000) (NAimF(T),I=1,10),NTR
232 DU 01100 1=1,255
233 IFTNDI

* 2311 TF(NTRNS(i, 1).NE.0) CALL GFTNAM(NTRNS(1,1),TEMP)
235 TF(MA1CHC(NA., TF4iP,10).FQ.l) RETURN4
236 0400O CON FTNIJE
237 C DIDN'T FIND IT, SO CREATE IT.

*239 C
23Q NTP=PN rp+ i
24n CALL NAN.FIT(NTRNS(NTR,1),NAi4iE,10)

"I * 87



Petrinet.ftn Pane 5 Tue Nov 27 06:18:55 t979

241 TFINDT=NTH
242 TF(NTR.LF.259) RETURN
243 CALL EPRRRP(2,8H IFTNDT,0,0)
244 RETURN
245 END

*246bC
247 C
?48 FUNCTION IFINDN(NAmE,NET)
24q BYTE NAME,TLMP
250 0IMENSION NAmE(1l),TFMP(lo)
251 DIMENSIUN NET(?55,Li)
252 C
253 C FINn THE NAM~E IN THE TABLE
254 c kETU.RN n IF NOT TH~ERE
255 C
256 D9000 FOPMAT(l IF1NDN:NAmE ',lOAt)
257 D WRTTE(7,90n0) (NAME(I),l:1,10)
25R IFTNDN:0
25q DO 01;00 1=1,?55

260 IF(NET(Il).NE.0) CALL GFINAm(NET(I,1),TEMP)
261 IF(MATCHCU'IAwEoTE*,1P,1).EO.1) GO TO 0510
262 OSOO CONTINU.E
263 RETURN
264  0510 CONTINUE
2b5 IFINDN=I

*266 RETURN
267 END
268 C
270 FUNCTInN MATCHC(STRIfjG1,STRNG2,KOUNT)

* 271 BYTE STHNGI,STRN9?
272 DIMENSION SrfPN(j0),STRNG2(10)
273 mATCHC=O
274 D9000 FORMAT(' MATCHC: ',2(1OAI,2x))
275 D WRTTF(7,q000) (STRNGI (T),I=1,10), (STRNr,2(I),T:1,l0)
276 DO 0550 T=1,K0UNT
277 IF(STRNGI(T.NF.STPNG2(I)) RETURN
278 0550 CORITTNUE
27Q MATCHC:1
280 RETURN
281 END
282 C
283 C
284 SUBRNOUTINE LTSTX (NET ,NTRNS,NFRE,NXTF,KTIME,NEVNTR)
285 PYTE TEMP
286 DIMENSION TEmP(10)
287 flIMLNSION NIET (255,4) ,NTRNS(255, 3) ,NFRE(999,a)
288 C
289 C AFTER STATIC HAPOWAPE NFT IS IN, DO AN ANALYSTS,
290) C FIRST PRLNr SYMBOL TARLF DUM PS. THEN DU STATIC
291 C CONFLTCT ANALYSTS OF THE NE.TwORK
?92 C
293 0600 FORMAT(//,20Y .......-SIATIC-STRUCTURE-ANALYSIS -------

*29'I 1//)
29; WRT(7,06n0)
296 CALL OUJMP(NET ,NTRNS,NFRE-,NXTF,KTTME,NEV,NTR)
297 WRTITE(7,0b00)

29A RE.TUPN
29q END)

88



Petrime t.ftn Paqe b Tue Nov 27 06:18:55 1979

*301 C
302 C
303 SUBROUTiNE DUMP (NET ,NTRNS, NFRENXTF,KTTME,NEV,NTR)
304 8YTE TEMP

* 305 VI'NENSION TEMP(10)
306 DIMENSION NET(?59,L*),NTRNS(255,3),NFRE(992)
307 C
308 0700 FORMAT(/#2?X,'NETOORK ARRAY DUMP TIME I15
309 1' EVENTS '/,3Xo' -- NAME-- -MARKER- -- TYAE ,

310 C 2'-- -OUT~PUT- ',//)
311 0710 FORMAT(A,10A1,3I1O)
312 WkITF(7,07nO) KTIviE
313 DO 0720 !:'I,NEV
314l CALL GFTNA-m(NETCTI),TEMP)
315 WRTTE(7,0710) (TEMP(TJK),IJK:1, 10),(NET(I,J),J=2,4)
316 0720 CUM TrI NtE
317 0730 FOPM*AT(/,20X,l TRANSITION TABLE AND FREE SPACE 001
318 1MIP',/,3X,' --NAMF-- INPUT PIP. OUTPUT PTR /I
31q 0740 FORMAT(X,10A1,2I10)
320 WRTE(7,0730)
321 D0 U750 I,NTR
322 CALL GFTNAM(IKJRNS(T,1)fTEMP)
323 0750 WRTrE(7r0740) (TEMP(TJK),IJK=I ,10),(NTRNS(I,J),
324 J=2, 3)
325 RETURN
326 END
327 C
328 C
320 SU8ROUTINE TDUMP

* 330 COMMON/NEI/ NET (?55,4),.NTRNS(255,3) ,NFRE(999,2),
331 1NXTF ,KTImE,NEV,NTR
332 CUM1MON/SnFT/ JNET(?5S,4),JTRNS(255,3),JEVJTR
333 comi4ON/UMP/ NFPEE1
334 C0mM ON/NAMFI/NAW'ES(203,10),NXTNJAM
335 BYTE NAMES
336 RYTE TEMPI TEMP2
337 DIMENSTON fEN'P1 l0),TEMP?(10)
33A 0900 FUPMAT(X,1 ------------------------------------------- ------- 1)

339 0810 FUPNAT(//,?X,'FPEFSPACE ',/,3X,
340 I'-NUM4BER- -EVENT- -- NEXT--',//)
34 1 0A20 FURMA r ,jiii ,?x, I A I ,110)
342 WRITE(7,n8t0)
343 DO 0830 It,NXTF
344 CALL GFTNAm(NET(N!FPE(I, 1), 1),TFMP1)
345 CALL GFTNAm (JNT(NFRF(I 1),1),TEMP2)
346 IF(I.LE.NFREFI) WRITE(7,0820) I, (TEMP1(J),J=1, 10),
347 INFRE(I,2)
349 IF(l.EQ.NFPEEI) 'WRTTF(7,0800)
349 IF(I.GT.NFREE1) 'R!TE(7,0820) T, (TEMP2(J),J=1 ,10),
350 1NFRE(1,2)
351 0830 C UhlTT Nt'
352 O8L40 FOP,AAr5X,'NAmES NtXTNAM=9,14)
353 0850 FURmAT(5X,1UA1)
354 V4RTTE(7#0840) NXTN8M
355 DoOP060 T=1,NXTNAM-1
356 0860 WR!TF(7,0850) ~8t~S1J,:,0
357 RETURN
35p END17
35Q C
360 C

89



oet rinet f t n Paqe 7 Tue Nov 27 06:18:55 1979

361 SUBROUTINE LJYNAMO
362 COMMON/NE[/ NIET(255,4),NTRNIS(255,3),NFRE(999,2),
363 1NXTF,KTIME,NEV,NTR
364 COMMON/DYN/ LUOKJ (255),LOOK2(255)

* 365 CUNMMON/SCAN/ NUMB,ThORD(1'5,10)
366 C
367 C INTERPREr DIJNAMIC COMMANDS AND RUN SIMULATION
3b8 C
369 C
370 TF(KrIME.EO.0) KTIME~l
371 C
372 OQOO CONINUE
373 CALL SCANR(5)
374 TF(tMATCHS(j,3HFNr),3).EQ.1) RETURN
375 IF(MATCHS(j,4HMMAPtK,4).EQ.1) GO TO 0920
376 TF(MAICHS(1,6HOUTPIJT,b).EQ.1) GO TO 0930
377 IF(NlATCHS(1,7HEXFCUTE,7).EQ.1) GO TO 0940
378 0910 CONTINUE
37Q CALL ERRRRR(5,PH DYNAMO,,o)
380 cO To 0900
381 C
382 0920 CALL MARKET
183 G~O TO 0900
384 0930 CALL SETOUT
385 GO TO 090U

*386 0940 CALL EXEQ
387 GO To 0900
388 END
380 C

*390 C
391 SUPROUTINE MARKET
392 cummnN/NEr, NET(255,I) ,NTRNS(255,3) ,NFRE(999,2),
393 1NXTF,KTIME,NEV,NTR
394 COMMON/SCAN/ NlJMP,IW0RD(15,10)
'495 C
396 BYTE TEMlP
397 DIMENSION TEW~P(10)
398 C
39q C MARK AN EVENT W~ITH THE DESIREn VALUE
400 C
401 CALL JWORD(2,TEMP)
402 N1:IFINDN(TEwP,ivFl)
403 IF(NI.NE.O) GO TO 1000
404 CALL ERRRRPC'4,gH MAPKET,IWORD(2,1),0)
40c; RETURN
406 1000 CONT INUJE
407 CALL XINT6P(NUMB,IVALUE)
409 NET(NI,2)=IVALUE
40Q RETURN
410 END
411 C
41? C
413 SUBROUTINE SErOUT

* 414 CUMMON/NET/ NET(2-55,4) ,NTRNS(255,3) ,NFRE(999r2),
415 INXTF ,KTliME ,NEV ,NTRI.416 BYTE IWORI)
417 COMMON/SCAN/ NIIMB,IV.-ORD(l5,10)

* 418 RYTE TEIMIP
41c) DIMENSION TEm'P(10)
420 C

90



cetrinet.ftn Paoe 8 Tup Nov 27 06:18:55 1979

421 C SET OUTPUT FLAG ON DESIGNATED EVENT
422 C
423 CALL JVt4RDQL{UM,TEkP)
424 Nl=IFINDN(TEvP,NFT)
'*25 TF(Nl.NE.0) GO TV) 1100
4$26 CALL ERRRRR('$,AH SETOUT,IWORD(NUMRI)P0)
4$27 RETURN
4I28 1100 CON1INUE
429 NET(N1,4):1
430 RETURN
431 END
432 C
4 3; C
434 SUBROUTINE EXEQ
'$35 COMIAON/NET/ NET(255,$) ,NTRNIS(255,3) ,NFRE(99,2),
436 1NX T F , KT IMNE , E V , NT R
437 COMMON/SOFT/ JNET(255,4) ,JTRNS(255,3) ,JEV,JTR
438 C
439 C EXECUTE THE REf)IJESTOR/SFRVEP NETWORK
440 C
441 CALL XINTGR(2,ITTME)
44? KLTMTTKTIMAE+ITIkYE
443 C
444 1200 CONFINIkt
445 IFOKTlmE.GE.ILTmT]) PETUPN

*446 CALL EXEOI(JNIET,JTRNSPNFPE,NXTF,JEV,JTR,1,TGO,
447 1KTIME)
448q tF(IGO.EQ.1) GO T(3 1?00
449 IF(KSUFT(IGU).EQ.O) RETURN

*450 CALL HWGO
451 CALL EXEPl (NFT,NTRNS,NFRF,NXTF,NEV,NTR,0.1GO,
4$52 IKTTME)
453 Go TO 1200
454 END
455 C
456 C
457 SU8ROUTINE EXEOI(KNIET,ITRNJ,NFRE,KTF,TEV,TTR,TFUNC,
458
459 1IFIPE,KTINIE)
460 BYTE TIMP

/Jbl DIMENSION TEMP(l0)
462 COmMON/DYNq/ LOOI(?55),LOOK2(255)
463 DIMENSTON KNET(255,4) ,TIRN(255,3) ,NFRE(999,2)
464 DIMENSTOI RPRINT(255)
465 C
466 C EXECUTE THE SPECIFIED NETWORK FOR ONE CLICK
467 C IFijNC z I- SOFTYYARE NET,
468 C IFUNC = 0 -)HARDWARE NET .......
46q C
470 C IFIRE =0 -3NOTHING FIRED THIS TIME
471 C IFIRL 1 I- ONE OP MOPE TRANSITIONS FIRED.
'$72 C

*473 C
4$74 IFIRFSOI.475 1300 FOPMAT(X,'TIwE=WaJ,\')

*76 TF(IFUNC.EQ.l) GOTO 1310
4$77 WRIIE(7pl300) KTIME
47A CALL HWRANn
479 C
480 1310 COUN TT 41 E

91.



oetrinet.ftn Pane 9 Tue Nov 27 06:18:55 1979

* '81 CALL MARKER(LUOKI ,KNFT,ITRN,NFPE,KTF,IEV,ITR)
'18? DO 1320 T=1,TEV
'183 KPQINT(I)=0
4184 1320 CONITNUE

* '85 C
'186 DO 1390 T=1,YTR
'87 C CHECK alHICH TRANSTTOS APE RFADY TO FIRE 1
'188 C EXECUTE
'189 CALL MARKEQ(L00K?,IKNFT,ITRN NFREKTF,IEVITR)
4190 TF(LO)OK1(I).FQ.0 .AND. LOOKM().EOQ.1) GO TO 1390
'191 TF(LfOK1(I)+LO0K2(I) .EQ. n) GO TO 1390
'19? rF(LOK1(I).EiU.LOVK2(I)) GO TO 1330
'193 CALL EPRPHR(6,7H EXEO,ITRN(I,1)o0)
'1913 GO TO 139u
'195 C
4196 1330 CONFTNUE
'197 C FIHIiNG A TRANSITION - UNMARK INPUTS, MARK OUTPUTS
4198 C
4190 IFIRE:1
s00 NEYT=ITRN(T,2)
501 13L40 CONTNUE
50? TF(NEXT.E~i.0) GO TO 1350
903 NEXOLD=NFXT
90'1 NEY'T=NFRE(NEXT 12)
505 C CHECK IF NUO TOKEN5..-AYPE USED ON THIS TRANSITION
506 IF(KNET(NFRE(NEXOLnp1)p2).EO.0) GO TO 1370
507 C IF NO t'ORF TOKENS, HAVE TO BACK OUT OF TRANSITION
50S KNEF(NFNF(NEXOLD, 1),?)=KNET(NFRE(NEXOLD,1),2)-l
509 GO TO) 134U
9 10 C
511 1350 CON1T '4UE
512 C
9513 NEX~T=ITP"J(1,3)
514 1360 CONTtIUE
515 TF(NExT.EQ.u) GO Tn 1390
916 NEXULD=NFXT
517 NE~l=NFRFU'JEYT,2)
518 KNFT(NFRE(NEXOLO, 1),?)=PNET(NFRE(NEXOLD,1),2)41
519 IF(IFUNC.EO.1) CALL RSIN(KNJET(NFRE(NEXOLD,1),1))
520 IF(IFUNC.En.0) CALL PSOUT(NFPECNFXOLD,1))
521 KPRINIT (NFRF (NExOLD,1) )=l
922 GO TO 1360
523 C
5243 1370 CONTYNIJE
525 C REPLACE SPMF TOKENS.. THIS TRANSITION IS WIFRD,...
526 TSTOPD=NFXflLf
527 NEYr=ITRN(I,2)
S2A 1380 CONTINUJE
529 IF(NEXT.EQ.ISTOPD) GO TO 1390
530 NEXOLU=NFXT
531 NEYT:NFRE(P;ExT,2)
532 KNFi(NFR(NEVOLD,),2)=KNET(NFRE(NEXOLD,),2)s1
933 GO TO 1380
5341 C ENU OF BAK-UP PROCESS
935 C
536 1390 CONTINUJEI. ~~537 C 019 :,E

539 1391 FUPMAT(5X,**A**FVFNT ',IOA1,l MARKED WITH 1,1110,

92



petrinet.ftn Pape 10 Tue Nov 27 Ob:lIR:55 1979

5141 CALL GETNAm(KNET(J,1),TEmP)
5142 IF(KPRTiqT(J).El.t .AND. KNET(J,Lfl.NE.0)
5143 1 WRTTF(7,13ql) (TFMP(K),K=1,10),KNET(Jv2)
54~4 1392 CONTINUE
S 4 5 C
5146 TF(IFUNC.EQ.O) KTIm~E=KTIME+1
547 RETURN-
548 END
5149 C
550 C
551 SUBROUTINE HNGO
552 COmON/NE/NET(295,4) ,NTPNS(255,3) ,NFRE(999,2),
553 1 NI xTF , KT I E , NFV N T R

551J COMMON/CTRLR/ IMOD,ICQ(250)rICUPTR
555 C
556 C MARK AS MANY HARDWARE UNITS AS DESIRED
S57 C (ACCCOnDING TO OUTSTANDING SK REQUESTS)
55A C NOT To ExCEEU THE LTMIT OF 'ImUDE1.
559 C
Sb0 C THEN! SHIFT UiP THE QuIEUE, TCO, AND RESET ICQPTR
561 C
St.? C IF ICOPTR 0 NOTHING TO DO, SO RETURN ...
563 TF(ICQPTP.FQ.0) RETURN
9c14 C
5b5 P)O 14100 Tz1,TCQPTR
566 NET(TCO(I) ,2)=NET( TCfC(T),2)t1
5b7 =
508  IF(I.EO.IMOOF) GO TO 1410
569 14100 CONrTI NIJE
570 C
571 1410 COUN T I NE
572 C REPACK QUEUE
573 rO 1420o TI,ICGPTR-J
5714 TCO(T)=ICQ(J+I)
575 1420 COUNT INIJE
c;76 ICOPTR=ICQPFP-J
577 C
578 RETURN
579 END
580 C
581 C
582 SUBROUTINE HLWRAND
583 COMNION/NFT/ NET(?55,11)
584 COMMON/RA%JO/ RANDP
589 C
c;86 C CHECK RANOOv' EVENT AN4D MARK IT PROBAbILISTICALLY.
587 C
58A PROBi=RAN(11,T2)
989 TF(PROB.LT .HAtNDP) NET(255,2)=NFT(255,2j.1
590 RETURN
591 END
5 9?. C
593 C

* 5914 SUB~ROUTINE MARK(ER (KRAY ,NFT ,NTRNS,NFHE,NXTF,NEV,NTR)
595 DIMENSION NET(259,11) ,NTRNS(255,3),NFRE(999,2)
596 DIMENSTON KRAY(255)

[S99 7 C
S9 DO 1900 1=1,'NIR
59q KRAY(I)=O
600 1900 CUNTrINOE

2ie 93



ietrirnet.ftn Paoe 11 Tue Nov 27 06:18:55 1979

801 C
60? 00 1530 rIPlNTP
ho03 K I U
601 K(2=0
605 C
606 ~ IEXT=NTRNSU 1 2)
607 15310 CONTINuIE
60A TF(NEXT.FQ.U) GO TO 1520
609 NEXULLJ:NEXT
61n I ,EXT=NFRU(NEXT,2)
61, K2:,Q1l
613 6O TO 1510
614I C
615 I5W0 C OKIT I NE
616 IF(1(I.EQ.'2) NRAV(T)=l
617 C
618 1530 CONTINUE
619 C
620 RETURN
621 END
622 C
623 C
6211 SuRRuUTINIE PGMNET
625 COmpMorq/SflFT/ JNIET (255,1) ,JTRNS'295,3) ,JEVJTR

627 C THE SnFTAE NET SUTLD ROUTINE ...
62$ C FIRST RENAME
629 C
630 C THEN CONTINUE REbIIILDTNrl -.HF NET
631 CALL STATIC (JNFT,JTiHNS,JEV,JTR)
63? C NON LOOK FOP THE REGIN STtTFMENT ...
633 T=TFTNDN(1OHPtGIN ,JNET)
6341 IFtI.1NE.0) GO TO 1600
635 CALL ERRRRR(P,hMPGl,'NFT,0)
636 C
637 1600 CUN'TTN'JE
63A C MARK THE SOFINARE BEGIN EVENT
63q JNET(I,2)=t
6410 RETURN
6411 END
6112 C
6113 C
6141 SUPROUTINE RSIN(NAME)
6115 AYTE TEMP
6416 D1kNYSTUN TEmP(10)
6117 COm-MON/NET/ 'ET(?55,'I) ,NTRNS(255, 3) ,NFRE(999,2),

64119 1MXTF KTilAE NEVNTR
6'49 COmm6rI;SrlFf/ JNIET(?59,4),JTRNSC255,3) ,JEV,JTR
650 COMM0ON/RS7AtL/ IRS(90,3)
651 C
85? C THE RFQIJESTOR/SERVEP INTERFACE TABLE
653 C
6541 C IRS(NI,1) ) POINTER TO NAME OF SOFTrnARFE VENT
6)55 C REQUFSTING SERVICE
656 C IRS(M,2) -)START TIME OF REQUEST.

I.657 C IRS(M,3) -)HAROWAPE UNIT NUMbER kEQUIRED.
65A C
65Q CQkmM0A/CTRLP/ Tmn0F,TCQ(?50),1CUPTR
60 C

'94



oetrinet.ftn Pace 12 rue Nov 27 0b:18:55 1979

661 CCOMMON BLOCKS CTRLR CONTAINS INFO REGARIDING
662 C HARDOIARE REQUESTS, AND EXISTS SO THAT THE NOF
663 C REOUFSTS PER MINOR CYCLE CAN LIMIT AS DESIRED.
664J C REQ~UESTS STACKED IN TCno THE QUJEUE, AND SERVICED
665 C AS POSSIRLE, A MAX OF IMODE EVERY MINOR CYCLE.
666 C
667 C ENTER NAME IN THE TABLE, PLACE HW IN QUEUE, ThEN
668 C REMO0VE SOFT TOKEN. (00 NOTHING IF SOFTEVENT
669 C IS TYPE 0 V.'MICH IS A NILL EVENT FOR PRECEDENCE)
670 C
671 CALL GFTNAM(NAmE,TFEMP)
672 NUMBFR=JNET(IFTNDN(TFMAP,.INET) 13)
671 IF(INU.MER.EU.0) RETURN
67t1 C
675 PO 1700 I:1,gO
676 IF(IRS(I,1).EtQ.0) GU 10 1710
677 1700 rON iTTMJE
678 CALL EPR9RP(11,4HRSIN,TEmP,0)
679 C
680 1710 CONTINUE
681 pu 1726 J=1,rNEV
682 IF(NET(J,3).E.NtJ~vRER) GO TO 1730
h83 1720 C W IIN .)E
68l CALL ERRRRR(9,tjHPSTN,NAMF,0)
685 1730 CON TTNI'E

*h8b TCQPTR=ICwPIR4I
687 TF(ICOPTR.GT.250) CALL ERRPRR(11,lOHRSTN (ICO),00O)
68A TCO3(TCOPTR)=.J
689 J:TFIN0N(TFMP,JNET)
690 JNFT(J,2)=O

S 691 TIRS(1,1)=NAME
692 IRS(I,?):,'TImE
6q3 TRS(I,3)=NNI'1P
694 1740 FOPMAT(5Xr'*PROGRA4 EVENT 1,lOAI1 REQUESTS Hm',
695 1' Svcs 11115)
696 ORITF(7, 1 70) (TEMP('K),K~j, 10),KTImE
697 RETURN
699 ENn
699 C
700 C
701 SU~3IOUTINE RSOtJTCNIMPER)
70? PYTE TEMP
703 DIMENSION TEPP(10)
704 CUMPOON/NET/ :ET (255,U) ,NTRNS(255, 3) ,NFRE (9Q9,2J,
705 INXTF ,KTIMt,NEV,NTR
706 COmYION/SflFT/ JMIET(259,U),JTRNS(255,3) ,JEV,JIR
707 CUMMON/R9TAbL/ IRS(90,3)
708 C
700 C NET TRANSITION NUmBFR (HARD'wARE) HAS COmPLETED,
710 C SEE IF TTR TYPE IS .LT. 0 (A UNIT FINISH EVENT),
711 f AND IF SO, SEE IF A SnFTWARE EVENT WAS EXECtITING.
712 C IF SO, ONi A FTFO PASTS, COMPLETE THE SOFFEVENT,
713 C PRINT A MESSAGE, PEPLACE THE TOKEN IN THE SOFTNET

*71'4 C AND CONTINUE.
719 C
716 IF (NET (NUMR1LP, 3) .GE.0) RFTIJRN

C1 1800 FCPmAT(5X,'*PR0GRAm EVENT '1A, CnmPLFTES 1,115)

95



r AAOA1 607 NAVAL POSTGRAD UATE SCHOOL MONTEREY CA F/S 19/S
COMPUTER ARCHITECTURE PERFORMANCE PREDICTION FOR NAVAL FIRE CON-ETC(U)
DEC 79 D M STOWERS

UNCLASSIFIED NPS5279-006 NL7EEEEEE



q

Detrinet.ftn Paae 13 Tue Nov 27 06:18:55 1q79

721 C
722 DO IR1O 1=1,90
723 TF(IPS(I,3).NE.(NET(NUMBFR,3)*-I)) GO TO 1810
724 IF(IRS(I,2).GE.K) GO TO lb1O
725 JT
726 K=IRS(I 2)
727 1810 CONTTNUE
728 C
729 TF(J.Efl.0) RETURN
730 C FOUND IT ............
731 C MARK SOFTEVENT, UNMARK HARDEVENT
73? CALL GFTNA*(IRS(J, ),TEMP)
733 K=TFTN0N(TEMP,JNEr)
734 CALL GETNAm(JNFT(iK,),TEMP)
735 WRTTE(7, 1800) (TEMP(L)pL=1,1O)pKTIME
736 JNET(K,2)=t
737 NET(NUMtER,2)=NET(NUMBER,2)-!
73A IRS(J,)=U
739 IRS(J,2)=O
740 TRS(J,3)=0
741 RETURN
742 END
743 C
744 C
745 FUNCTION KSUFTWI UMMY)
746 COMMON/RS7AHL/ IPS(90,3)
747 C
748 C COUNT NIIM8EP OF ACTIVE PROCESSES IN TAbLE
749 C
750 J=0
751 DO 1900 T=1,9
752 TF(IRSCI,I).N-E.0) J=J+t
753 I00 CONTINUE
754 KSOFT=J
755 RETURN
756 END
757 C
758 C
750 SURROUTINE NAMFIT(IPOINT,STRTNG,KOUNT)
7o0 C761 C ----------------------------------- ..

762 C ENTER NAMF OF EVENT OR TRANSITION ISTRINGO
763 C INTO THE GENERAL NAME TABLE. RETURN A
764 C POINTER TO ITS ENTRY 1IPOINT'.
765 C ........ . ... .. .. . .. . . .. .
766 C
767 BYTE NAMES,STRING,TBLANK
768 COM4ON/NAMEI/NAMES(203,10),NXTNAM
769 DIMENSION STRING(10)
770 DATA NYTNAM/1/
771 DATA IPLANK/1H /
772 C ERASE THE ENTRY
773 DO 1920 T=1,10
774 1920 NANlES(NxTNAM,I)=TBLANK
775 C COPY IN THE DATA
776 DO 1921 I=1,KOUtNT
777 1921 NAME5(NXTNAM,I)=STRING(1)
77A C 8(UMP THE POINTER AND TEST FOR OVERFLOW.

*-779 TPOINT=NXTNAM

780 NXTNAM=NXTNAPtI

96



oetriflet.ftfl Paoe 14l Tue Nov 27 06:18:55 iqig

781 IF(NXTNAM.GT.203) G;O TO 1922
782 D9000 FOPMAI( NAMFIT: IPOINT STRING) 114,2X lAlO)
7830D wkiri(7,9000J IPOINT,(SfRING(I),f11105
784 RETURN
785 C GOT A PROBLEM ..........
786 1922 CONTINUE
787 1923 FORMAT(' **NAME TABLE OVFRFLOW DETECTED BY',
788 1' NAMEIT. (FATALP)
789 WRITE(h*1923)
790 CALL EYIT
791 END
792 C
793 C
7914 SURROUTINE GETNAM(TPOINT,sTRING)
795 C
796 C GET THE NAME (10 BYTE STRING) POINTED TO BY
797 C "TPOINT" AND RETURN IT IN "STRING"
798 C
799 BYTE NAMES,STRING
800 COmMON/NAMFI/NAtmES(2n3,10),NXTNAM
80 1 DIMENSTON STRING(10)
802 C
P03 D0 10140 T=1,10
8014 1940 STRING( I )NAMES( TPOINT, I)
809 D9000 FORMAT(' GFtTNAM: IPOTNTSTRING lILI,2X,1A10)
81060D WRITE(7,q000) TP0INT,(STPING(I),Iz1,l0)
807 C
808 C WASN'T THAT SIMPLE?
g0 q C
810 RETURN
Ft I END
812 C
813 C
8114 SUBROUTINE NAHITNP( TPOINT,NUMB)
815 C
816 C NAMEIT FROM AN INPUT SCANNER WORD
817 C
81g BYTE IWORD
819 CUMON/SCAN/NUMt3EF,IWOPD(15,10)
820 C
A21 BYTE TEMP
822 nIMENSTON TEP~P(10)
823 C
1214 n0 1960 T:1,10
825 1960 TEMlP(I):IaflR0(NUMdj,I)
8126 C
827 n9000 FORMAT( NAMITNP: NUMB,STRING '114f2X,1A1O)
8280D WRTTE(7,q000) NUMb,(TEMP(I),I=1,10)
A29 CALL NAMFIT(TPOIN,TFNbP,10)
830 C
031 RETURN
832 ENI)
833 C
8314 C
835 SURRnUTINE SCANR(LJNIT)
A. 36 C
837 C------------------------------------------- ---- - --
$138 C
A39 C FREE FOHMAT INPUT POUTINE. READS AN 80 BYTE

8140 C RECORD FROM LUGICAL UINIT "LUNITO AND STORES UP

97



netrinet.ftn PaQe 19 Tue Nov 27 06:18:55 1979

841 C TO 15 BLANK DELIMITED TOKENS (LEFT ADJUSTED)
842 C IN BYTE ARRAY "IWORD".

*843 C
*8441 C NUMERICAL VALUES CAN BE REFORMATTED FROM BYTE

845 C STRINGS INTO INTFGFR AND FLOATING POINT VALUES
846 C THRU THE SUBROUTINES "XFLOAT" ANT) "XINTGRO.
847 C---------------------------- --------------------------
848 C
649 BYTE IWORD,1SCIRLANK
850 COMMON4/SCAN/NUMBER, IVlORD( 19,10)
951 BYTE NPUFFR
85? COMlMON/SCAN1/N9UFFR(A0)
853 DATA lRC/IH;/
854 DATA ISLAN9/1H/
F155 DATA NEOF/0/
8t56 DATA KLINE/0/
857 2001 KLINE=KLINE~t
858 2000 FORMAT(8OAI)
859 C BEGIN BY RLADTNG A LINE OF 80 BYTFS..
8bO READ(LUNIT ,2000,EtD=203S,ERR:2035) (NBUFFR(I),
861 11=1080)
A62 200? FORMAIX,lT4,1 - 1,80A1)
863 WRITE(7,?002) KLTNF,(N8UFFR(I),I:1,80)
864 C SET POINTFR TO FIRST CHAR~ACTER IN THE BUFFER
sbs~ IPOINT:1
866 C NOA PROCLSS THE FTRST 15 TOKENS DFLIMLrED BY
867 C EITHER A RLANK (OR MULTIPLE 6LANKS) OR A
868 C SEMICOLnN.
eb9 C

*870 DO 2029 Nt~h'IER:1,19
871 IFLAG=O
872 C SET IWUPO(Nl.JMI9ER,y)=IRLANK(SET WORD TO ALL BLANKS)
873 PO 2005 T=1,10
A74 2009 IwORD(NUmbER,I):TbLANK
8479 C STAPT SCAN OF LINE FROM POINTER ON, FIND NON-BLANK
A76 KOIJNoT=1
877 C "KUUNT" KEEPS TRACK OF NO. OF CHAR. IN THE TOKEN
878 DO 2015 KPOINr:IPOINT,80
879 lF(N9UFFR(K~POIPfT).NME.IRLANK .AND. NBUFFR(KPOTNT)
880 1.NE.ISC) 60O TO 2010
881l IF(IFLAG.En.0) GO TO 2015
882 TF(IFLA6.EQ.1) GO TO 2020
883 C GUT SOmETHING, SO PROCESS IT ....
884 2010 CONTINUE
885, IFLAG:1
886 8onRD(NUmbER,KONT)= 'BIIFFR(KPOINT)
887 KOIJNT=KOtJNT+1
888 TFCKOUNT.GT.10) GO TO 2020
889 2015 CONTINUE
890 C
lk91 2020 CONTINUIE
t492 C END OF TOKFN FOUND, RESET SOME POINTERS

* 893 IPOINT=KPOTI4T+l
894 TF(IPUINT.GT.80) Go TO e030
895 c
896 2025 CUN[INt'E
897 C END OF 8ASIC TOKFN GETTING LOOP

899 2030 NUmbFR:N1JM9LR- I
g00 IF(NUM9ER.FQ.0) Gu TO 2001

98

- I--



oetrinet.ftn Paae 16 Tue Nov 27 06:18:55 1979

Q01 IF(MATCH5(l,-COMMENT:',8).EQ.1) GO TO 2001
902 RETURN
q03 2035 CONTINUE
904 C END OF FILE OR I/O ERROR DETECTED
905 2040 FORMAT( EnF OR ERROR ON SCANNER INPUT FROM UNIT
906 113)
907 WRITE(7,2040) LUNIT
908 NEOF=NEOFtl
9q9 IF(NEOF.GE.3) CALL EXIT
Q10 NUMBER=O
91t RETURN
912 END
q13 C
914 C
915 SURROUTINE XFLOAT(NwORD,FWDORD)
916 C
917 C CONVERT THE ENTRY IN ARRAY IWORD (9 NWORD) TO
918 C STANDARD FLOATING POINT REPRESENTATION, RETURN
919 C IT AS "FWORD".
920 C
921 BYTE IWORD
922 COMMON/SCAN/NUMBER,IWORD(15,10)
923 C
924 RYTE TSTRNG
925 DIMENSION TSTRNG(10)
926 C
927 C COPY STRING (TO ALLnN COMPILER TO STORE THE ARRAY
928 C HOWEVER IT WANTS TO)
q2Q DO 2045 T=1,10
930 2049 TSTRNG(I)=I oRD(NWORDO,)
931 C
q32 C DEFINE THE FORMATS:
933 2050 FORMAT(IFIO.3)
934 C DO IT!
q35 OECUDE(1O,2050,TSTPNG) FWORD
936 RETURN
937 END
938 C
939 C
Q40 ..SURROUTINE XINTGR(NWORD,IVALIJE)
941 C
Q42 C CONVERT THE ENTRY IN "IWORD" TO INTEGER
9Q3 C 4 RETURN INTFGER "IVALUE"
944 C
945 BYTE IWORD
946 wl COMMON/SCAN/NUM8BER,INOPD(15,10)
q47 BYTE TSTRN-
948 DIMENSION TSTRNG(10)
949 RYTE IRLANK
Q50 DATA ISLANK/IH /
951 C
952 C COPY THE STRING (SAME PROBLEM AS ABOVE)
953 nO 2055 1=1,10
954 KO1JwT=I
955 TSTRNG(i)=IaORn(N ORD I)
956 IF(IWORD(NWOPU I).EQ.IRLANK) GO TO 2060
957 C WE'VE FOUND THE END OF THE LINE
958 2059 CUNTINUE
959 2060 CONTTNIJE
960 KUtINT=KOIINT-1

99



f-7
Petrine t.ftn Pace 17 Tue Nov 27 06:18:55 1919

961 C
962 2065 FORMA1(1I10)

964 QECODE(KflUNrr20b9,TSTRNG) IVALUE

965 RETUR14
9b6 END)
967 C
9 01 C

Qb9 FUNCTION MATCHS(NUMB,STRINGNCHAR)
970 C
971 C THIS FUNCITO DETERMINFS IF SCANNER TOKEN
972 C TkwORD(NUMt3) MATCHES THE CHARACTERS IN *STRING"
Q73 C A] LEAST FOR THE FIRST HNCHAR" CHARACTERS.
974 C
975 C IF THERE IS A MATCH, IT RETURNS THE INTEGER -1-
Q76 C NU MATCH kETtIRNS "0".
977 C
978 BYTE IWR
970 COMMON/SCAN/NUtMk3ER,IWORD(115,tO)
980 BYTE STRTN,
981 DIMENSION STRING(ln)
9p82 mATCHS=0
983 C
98L1 C TEST THE STRINGS...
985 nO 2070 fI,NCHAR
986 TF(IWORD(NtJMR,I).NE.STRING(I)) RETURN
987 2070 CONTINUE
988 C
989 C IF YOU GET HFRE# THEY W~ERE THE SAME ...
Q90 mATCHS~l

*99t RETURN
992 END
993 C
Q94 C
995 SUBROUTINE ERRRRR(Klt,!D,KALLER,NAMEMARK)
Q96 COMAMOAJ/RRR/ NSG(tl)
997 C MSG(N)=FATAL FLAG (1--)FATAL)
998 BYTE KALLER*NAML
990 fDImEtjSION KALLERC 10),NAME( 10)
1000 MSG(1):1
1001 MSG2)=1
1002 MSG(3)=O
1003 MSG('4)=0
1004 MSG(5)=n
1005 MSG(b)=0
100b MSG(7)=O
1007 MSG(8)=t
1008 MSG(9)=t
1009 MSG(10)=0
1010 MSGC1I)m1
1011 C
1012 2101 FfRMAT(SXf1A2 OERPUR 1,112o, DETECTED BY 1,1OA1,
1013 11 MISSING; SfCIf. bEGIN (FATAL)',1 A2)

*101'4 2102 FORMAT (SX1A2 ' ENRUR "112, DETECTED BY -,1OAI,
1015 1' SYMBOL TABLE OVFRFL~ov (FATAL) 111A2) I
10ib 2103 FORMAT(SA0,1A2, 'ERRUR ',4[2 DETECTED BY ',IOAIr

I~l NAME nU PLrCA ION ) 6, A2
1018 2104 FORMAT(5x,1A2,'ERRUR 19112 1 DETECTED BY ',1OA1.
1019 1 ' ' JOA1,' UNDEFINFD (IGNORED)'jA2 BY )
1020 2105 nRmAT(9x,ZA2,FNR~OR 1,112f- DETECTED BY'OA1,

100



IQ
oetrinet.ftn Page Is Tue Nov 27 Ob:18:55 1979

1021 1' --SYNTAX ERROR-- (IGNORED) ',1A2)
1022 2106 FORMAT(SX,1A2,'ERROP ,#112o' DETECTED BY 1,1OA1,
1023 1' DYNAMIC CONFLICT 1,10A1,1A2)
1024 2107 FORMAT(SX,1A2,' EVENT #,lOA1,l MARKED fo1I10,
1025 11A2)
1026 2108 FORMAT(SX 1A2,'FRPOR 1,112, DETECTED BY ',iOAl,
1027 1' NO PEGIN FVENT FOUND (SOFT;NFT)I,1A2)
1028 2109 FORMAT(S51A2 'RPOR '112,' DETECTED BY lOA1,
1029 1P NON-EXiST. A. UNIT h4QUESTED ' A2)
1030 2110 FORPAT(9X,1A2,'ERROR lp112,- DETHD BY ',10A1,
1031 it-------EkRUP-10 --- BAD-CALL-TO-ER'.1A2)
1032 2111 FORMAT(SX,1A2,1ERRUR ,P112,' DETECTED BY l,IOA1,
1033 11 R/S TAbLE UVERFLOW (FATAL) ',1A2)
1034 C
1035 KSIAR:2H**
1036 C
1u37 IF(KIND.LT.1 .OR. KIND.GT.11) KrieD=10
1038 IF(KIND.EQ.1) GO TO 2121
1039 IF(KIND.EQ.2) GO TO 2122
1040 IF(KIND.EO.3) Go TO 2123
1041 IF(KIND.4e) Go TO 2124
1042 IF(KIND.EQ.9) GO TO 2125
1043 IF(KIND.EQ.6) Go TO 2128
1044 IF(KIND.E0.7) Go TO 2127
1045 IF(KIND.EO.A) GO TO 212P
1046 IF(KIND.EQ.9) Go TO 212Q
1047 IF(KINO.E0.10) Go TO 2130
10483 C THEN KIND:11
10 4q wR1TE(7,2111) KSTAR,K7ND,KALLFR,KSTAR
1050 IF(MSG(KINO).EU.O) RETURN
1051 CALL EXIT
1052 2121 CONTINUE
1053 viRITE(7,2101) KSTAR,KINDKALLER,KSTAR
1094 IF(mSG(KLNO).FiQ.O) RETURN
1055 CALL EXII
1056 2122 CONTINUE
1057 WRITE C 12102) IKSTARPKTND,KALLER,KSTAR
1058 IF(MSG(KIND).EU.U) RETURN
1059 CALL EXIT
1060 2123 CONTINUE
1061 V RITE(7,21 03) KSTAR,KTNfl,KALLERoKSTAR
1062 IF(MSG(I(IND).FQ.0) RETURN
1063 CALL EXIT
1064 2124i CONTINUE
1065 WRITEC 1,2104) KSrAR,KIND,KALLER,NAME,KSTAR
1066 IF(mSG(KIN0).EJ.O) RETURN
1067 CALL EXIT
1068 2125 CONTINUE
1069 nRITE(7,21 05) KSTAR,KTND,KALLER,KSTAR
1070 IF(MSG(KINO0).EQ.0) RETURN
1071 CALL EXTI
1072 212b CONiTINUE
1073 ARITE(7,21 06) KSTAReKUNDI(ALLER,NAME,KSTAR

* 1074 IF(MSC(KIND).EQ.0) RETURN
1075 CALL FxilL1076 2127 CONTINUE
1077 bVRITL(7,21 07) 14STAR,KALLER,MARIK,KSTAR

* 1078 IF(mSG(KINO).EQ.0) RETURN
1079 CALL EXIT'
l0MO 21?8 CONTINUF

101



Detrifet.ftfl Paae IQ rue Nov 27 06:18:55 1979

1081 hRITE(7*21UR) KSTAR,KTN(O,KALLER,KSTAR
1082 IF(MSG(KINU).EG.0) RETURN
1083 CALL EXIT
108'I 2129 C014TINUF
1085 hRITE(7,21 UQ) ,KSTAR,KTND,KALLER,KSTAR
1016 IF(MSG(KIND).E@).0) RETURN
1087 CALL EXIT
1088 2130 CONTINUE
1089 WRITE(7,21 10) KSTAR KINDKALLER,KSTAR
1090 IFMfI1O.(.)RETURN
1091 CALL EXIT
1092 END

Ile

102



LIST OF REFERENCES

1. Barbacci, M. R. and D. P. Siewiorek, "Evaluation of
the CFA Test Programs via Formal Computer Descriptions',
Computer Vol 10, No. 10 (October 1977).

2. Bell, C. 0. and A. Newell, Computer Structures: Readings
and Examples, McGraw-Hill, 1971.

3. Bell, C. G. and 4. Newell, "The PMS and ISP Descriptive
Systems for Computer Structures", Proc. AFIPS 1970 SJCC,
Vol 36, pp 351-374.

4. Cox, L. A. Jr. '*Performance Prediction of Computer
Architectures Operating on Linear Mathematical Models",
Ph.D. Thesis, Computer Science Dept., UC Davis Report
UCRL-52562 (Sept 28, 1976).

5. Dietmeyer D. L.. "IFTRAN", Univ. of Wisconsin, Working
Paper (November 1977).

6. Dietmeyer .D L. "Digital Design Language Translator -
DDLTRN , Univ. of Wisconsin, Workinw Paper, (November
1977).

7. Dietmeyer .D L., "Digital Design Language Simulator -
DDLSIM , Univ. of Wisconsin, Working Paper, (January,
1978).

8. Dietmeyer, D. L. and M. H. Doshl, "Automated PLA
Synthesis of the Combinatorial Logic of a DDL
Description , Univ. of Wisconsin, Report ECE-78-17,
(November 1978).

9. Dietmeyer, D. L., "Traslation of DDL Descriptions
of Digital Systems, Univ. of Wisconsin Report
ECE-77-13 (September 1977).

10. Dietmeyer, D. L., "Connection Arrays From Equations",
Univ. of Wisconsin, Report ECE-78-18, (December
1978).

11. Doty, D. L. and G. ,J. Lipovski, ".evelopments and Direc-
tives in Computer Architecture' , Computer, Vol 11, No.
8 (August 1978).

12. Ferrari, D., Computer Systems Performance Evaluation,
Prentice-Hall, 1978.

13. Freeman, H. A., "Performance Evaluation Trends', IEEE
Computer Society Conference Proceetings, COMPCON,4l (?all 1978) pp. 396-398.

103



14. Lipovski, G. J., "Hardware Description Languages, Voices
from the Tower of Babel", Computer Vol. 10, No. 6
(June 1977).

15. Loomis, F., "Memo 3.20 Progress Report of the Working
Group of the Cqnference on Computer Hardware Descrip-
tion Languages , Vorking Papei (October 20, 1977).

16. MacMichael, A., "New DOD Effort In VESICS", Military
Electronics/Countermeasures (January 1979).

17. OMB Circular A-109 (August 1976).

18. Powers, V. M., "Functional Program Modules (FPMs) and
Digital Systems Design", Report NPSA52PW72O71A
(20 July 72).

19. Reitmeyer, R. A. Jr., "Computer Aided Design, Design
Automation and LSI; Keys to High-Performance Military
Electronics", ERADCOM (June 1978).

20. Salisbury, A., LTC and Bruce Wald, "The Computer Archi-
tecture Project: Service Prospective and Overview",
Computer Vol. 10 No. 10 (October 197?).

21. SEAFIRE Proposal Vol. 4C, "Substantiating Technical Data"

(29 May 1979).

22. SEAFIRI Weapon System Specification XWS-17824.

23. Su, Stephen T. H., 'An Introduction to CHDL (Computer Hard-
ware Description Languages)", Computer Architectue News,
Vol. 4, No. 3 (September 1975), pp 22-23.

24. Su, Stephen T. I., "Hardware Description Language Applica-
tions , Computer Vol. le, No. 6 (June 1977).

25. Weiss, D. M., "Evaluating Software Development by Error
Analysis: The Data From the Architecture Vesearch
Facility," Naval Research Laboratory Report 8268
(December 29, 1978).

1

L10



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2
Cameron Station
Alezandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Curricular Officer, Code 33 1
Veapons Entineerine
Naval Postgraduate School
Monterey, California 93940

4. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

5. Associate Professor Lyle A. Coz, Code 52CL
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

6. Naval Sea Systems Command 3
Vashington, D.C. 20362
Attn: SEA 62Y21D

Douglas M. Stovers

7. office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93940

0

•1 0


